×

Integral representation of continuous operators with respect to strict topologies. (English) Zbl 1387.46039

Let \(X\) be a completely regular Hausdorff space, \( C_{b}(X) \) be the space of all scalar-valued, bounded continuous functions on \(X\) with the strict topology \(\beta\) (some authors call the topology \(\beta_{t}\)), \((E, \xi)\) a Hausdorff locally convex space with \(E', E''\) its dual and bidual, and \(\xi_{\varepsilon}\) the natural topology on \(E''\). \(\mathcal{B}o\) denotes all Borel subsets of \(X\) and \(M(X)\) all scalar-valued, regular Borel measures on \(X\) with a norm topology. Let \(\mathcal{M} \subset M(X)\) be bounded. When \(X\) is compact, A. Grothendieck in his celebrated paper [Can. J. Math. 5, 129–173 (1953; Zbl 0050.10902)] gave many equivalent characterizations for \(\mathcal{M}\) to be relatively weakly compact. When \(X\) is a \(k\)-space, the author extends it to the present setting.
When \(T: (C_{b}(X), \beta) \to (E, \xi)\) is a weakly compact linear mapping, it is well known that it can be represented by an \(E\)-valued regular Borel measure on \(X\). The author extends this to the case when \(T\) is just assumed to be linear and continuous and proves that the representing measure is \(E''\)-valued and \(\xi_{\varepsilon}\)-tight. Also, for a \(k\)-space, some equivalent characterizations for \(T\) to be weakly compact are proved.
Several corollaries and related additional results are established.

MSC:

46G10 Vector-valued measures and integration
28A33 Spaces of measures, convergence of measures
46A70 Saks spaces and their duals (strict topologies, mixed topologies, two-norm spaces, co-Saks spaces, etc.)
28B05 Vector-valued set functions, measures and integrals
47B07 Linear operators defined by compactness properties

Citations:

Zbl 0050.10902

References:

[1] Aguayo, J., Sánchez, J.: The Dunford-Pettis property on vector-valued continuous and bounded functions. Bull. Aust. Math. Soc. 48, 303-311 (1993) · Zbl 0799.46019 · doi:10.1017/S0004972700015719
[2] Bartle, R., Dunford, N., Schwartz, J.: Weak compactness and vector measures. Can. J. Math. 7, 189-305 (1955) · Zbl 0068.09301 · doi:10.4153/CJM-1955-032-1
[3] Brooks, J.K.: On a theorem of Dieudonné. Adv. Math. 36, 165-168 (1980) · Zbl 0441.28006 · doi:10.1016/0001-8708(80)90014-6
[4] Buck, R.C.: Bounded contiuous functions on a locally compact space. Mich. Math. J. 5, 95-104 (1958) · Zbl 0087.31502 · doi:10.1307/mmj/1028998054
[5] Chacón, G., Vielma, J.: The Dunford-Pettis property and strict topologies. Sci. Math. 2(1), 99-105 (1999) · Zbl 0946.46025
[6] Conway, J.B.: The strict topology and compactness in the space of measures, II. Trans. Am. Math. Soc. 126, 474-486 (1967) · Zbl 0166.10901 · doi:10.1090/S0002-9947-1967-0206685-2
[7] Cooper, J.B.: The strict topology and spaces with mixed topologies. Proc. Am. Math. Soc. 30(3), 583-592 (1971) · Zbl 0225.46004 · doi:10.1090/S0002-9939-1971-0284789-2
[8] Dieudonné, J.: Sur la convergence de suites de mesures de Radon. An. Acad. Brasil. Ci. 23(21-38), 277-282 (1951) · Zbl 0044.12004
[9] Diestel, J.: Sequences and Series in Banach Spaces, Graduate Texts in Math. Springer-Verlag, Berlin (1984) · Zbl 0542.46007 · doi:10.1007/978-1-4612-5200-9
[10] Diestel, J., Uhl, J.J.: Vector measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, (1977) · Zbl 0369.46039
[11] Dinculeanu, N., Kluvanek, I.: On vector measures. Proc. Lond. Math. Soc. 17(3), 505-512 (1967) · Zbl 0195.34002 · doi:10.1112/plms/s3-17.3.505
[12] Edwards, R.E.: Functional analysis, theory and applications, Holt, Rinehart and Winston, New York (1965) · Zbl 0182.16101
[13] Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989) · Zbl 0684.54001
[14] Giles, R.: A generalization of the strict topology. Trans. Am. Math. Soc. 161, 467-474 (1971) · Zbl 0204.43603 · doi:10.1090/S0002-9947-1971-0282206-4
[15] Grothendieck, A.: Sur les applications lineaires faiblement compactnes d’espaces de type \[C(K)C(K)\]. Can. J. Math. 5, 129-173 (1953) · Zbl 0050.10902 · doi:10.4153/CJM-1953-017-4
[16] Hoffmann-Jörgënsen, J.: Vector measures. Math. Scand. 28, 5-32 (1971) · Zbl 0217.38001 · doi:10.7146/math.scand.a-11003
[17] Hoffmann-Jörgënsen, J.: A generalization of the strict topology. Math. Scand. 30, 313-323 (1972) · Zbl 0256.46036 · doi:10.7146/math.scand.a-11087
[18] Kantorovitch, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford-Elmsford, New York (1982) · Zbl 0484.46003
[19] Khurana, S.S.: Dunford-Pettis property. J. Math. Anal. Appl. 65, 361-364 (1978) · Zbl 0339.46002 · doi:10.1016/0022-247X(78)90187-7
[20] Khurana, S.S., Vielma, J.: Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions. J. Math. Anal. Appl. 195, 251-260 (1995) · Zbl 0854.46032 · doi:10.1006/jmaa.1995.1353
[21] Lewis, D.R.: Integration with respect to vector measures. Pac. J. Math. 33(1), 157-165 (1970) · Zbl 0195.14303 · doi:10.2140/pjm.1970.33.157
[22] McArthur, C.: On the theorem of Orlicz and Pettis. Pac. J. Math. 22(2), 297-302 (1967) · Zbl 0161.33104 · doi:10.2140/pjm.1967.22.297
[23] Nowak, M.: Linear operators on the space of bounded continuous functions with strict topologies. Positivity 14, 831-839 (2010) · Zbl 1217.46004 · doi:10.1007/s11117-010-0068-6
[24] Nowak, M.: Vector measures and strict topologies. Topol. Appl. 159(5), 1421-1432 (2012) · Zbl 1247.46036 · doi:10.1016/j.topol.2012.01.001
[25] Nowak, M.: A Riesz representation theory for completely regular Hausdorff spaces and its applications. Open Math. 14, 474-496 (2016) · Zbl 1360.46035 · doi:10.1515/math-2016-0043
[26] Panchapagesan, T.V.: Applications of a theorem of Grothendieck to vector measures. J. Math. Anal. Appl. 214, 89-101 (1997) · Zbl 0892.28009 · doi:10.1006/jmaa.1997.5589
[27] Panchapagesan, T.V.: Characterization of weakly compact operators on \[C_0(T)\] C0(T). Trans. Am. Math. Soc. 350(12), 4849-4867 (1998) · Zbl 0906.47021 · doi:10.1090/S0002-9947-98-02358-7
[28] Panchapagesan, T.V.: Baire and \[\sigma\] σ-Borel characterizations of weakly compact sets in \[M(T)\] M(T). Trans. Am. Math. Soc. 350(12), 4839-4847 (1998) · Zbl 0946.28008 · doi:10.1090/S0002-9947-98-02359-9
[29] Panchapagesan, T.V.: Weak compactness of unconditionally convergent operators on \[C_0(T)\] C0(T). Math. Slovaca 52(1), 57-66 (2002) · Zbl 1080.47019
[30] Panchapagesan, T.V.: The Bartle-Dunford-Schwartz Integral, Mathematical Monographs (New Series), 69. Birkhäuser Verlag, Basel (2008) · Zbl 1161.28001
[31] Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1964) · Zbl 0123.30202
[32] Schmets, J., Zafarani, J.: Strict topologies and (gDF)-spaces. Arch. Math. 49, 227-231 (1987) · Zbl 0615.46032 · doi:10.1007/BF01271662
[33] Sentilles, F.D.: Bounded continuous functions on a completely regular space. Trans. Am. Math. Soc. 168, 311-336 (1972) · Zbl 0244.46027 · doi:10.1090/S0002-9947-1972-0295065-1
[34] Shuchat, A.: Vector measures and scalar operators in locally convex spaces. Mich. Math. J. 24, 303-309 (1977) · Zbl 0363.46045 · doi:10.1307/mmj/1029001947
[35] Siggini, K.K.: Compactness and convergence of set-valued measures. Colloq. Math. 114(2), 177-189 (2009) · Zbl 1161.28004 · doi:10.4064/cm114-2-2
[36] Topsoe, F.: Compactness in spaces of measures. Stud. Math. 36, 195-212 (1970) · Zbl 0201.06202
[37] Tumarkin, J.B.: Locally convex spaces with basis. Dokl. Acad. Nauk SSSR 195, 1278-1281 (1970). (English Transl., Soviet Math. Dokl. 11 (1970), 1672-1675) · Zbl 0216.40701
[38] Wiweger, A.: Linear spaces with mixed topology. Stud. Math. 20, 47-68 (1961) · Zbl 0097.31301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.