×

The asymptotic behavior of a stochastic multigroup SIS model. (English) Zbl 1387.34074

Summary: In this paper, we explore the long time behavior of a multigroup susceptible-infected-susceptible (SIS) model with stochastic perturbations. The conditions for the disease to die out are obtained. Besides, we also show that the disease is fluctuating around the endemic equilibrium under some conditions. Moreover, there is a stationary distribution under stronger conditions. At last, some numerical simulations are applied to support our theoretical results.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34F05 Ordinary differential equations and systems with randomness
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
92D30 Epidemiology
34D05 Asymptotic properties of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Arbore, A., Fioriti, V. and Chinnici, M., The topological defense in SIS epidemic models, Chaos Solitons Fractals86 (2016) 16-22. · Zbl 1382.68020
[2] Bandyopadhyay, M. and Chattopadhyay, J., Ratio-dependent predator-prey model: effect of environmental fluctuation and stability, Nonlinearity18 (2005) 913-936. · Zbl 1078.34035
[3] Beddington, J. R. and May, R. M., Harvesting natural populations in a randomly fluctuating environment, Science197 (1977) 463-465.
[4] E. Beretta and V. Capasso, Global stability results for a multigroup SIR epidemic model, Math. Ecol. (Trieste, 1986), 317-342, World Sci. Publ., Teaneck, NJ, 1988. · Zbl 0684.92015
[5] Beretta, E., Kolmanovskii, V. and Shaikhet, L., Stability of epidemic model with time delays influenced by stochastic perturbations, Math. Comput. Simul.45 (1998) 269-277. · Zbl 1017.92504
[6] Carletti, M., On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment, Math. Biosci.175 (2002) 117-131. · Zbl 0987.92027
[7] Cheng, Z. and Hoffmann, A., A stochastic spatio-temporal (SST) model to study cell-to-cell variability in HIV-1 infection, J. Theor. Biol.395 (2016) 87-96. · Zbl 1343.92275
[8] Dalal, N., Greenhalgh, D. and Mao, X., A stochastic model of AIDS and condom use, J. Math. Anal. Appl.325 (2007) 36-53. · Zbl 1101.92037
[9] Enatsu, Y., Messina, E., Muroya, Y., Nakata, Y., Russo, E. and Vecchio, A., Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates, Appl. Math. Comput.218 (2012) 5327-5336. · Zbl 1244.92048
[10] Feng, Z. L., Huang, W. Z. and Castillo-Chavez, C., Global behavior of a multi-group SIS epidemic model with age structure, J. Differ. Eqs.218 (2005) 292-324. · Zbl 1083.35020
[11] Gray, A., Greenhalgh, D., Hu, L., Mao, X. and Pan, J., A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math.71 (2011) 876-902. · Zbl 1263.34068
[12] Greenhalgh, D., Some threshold and stability results for epidemic models with a density-dependent death rate, Theor. Population Biol.42 (1992) 130-151. · Zbl 0759.92009
[13] Guo, H. B., Li, M. Y. and Shuai, Z. S., Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q.14 (2006) 259-284. · Zbl 1148.34039
[14] Guo, H. B., Li, M. Y. and Shuai, Z. S., A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc.136 (2008) 2793-2802. · Zbl 1155.34028
[15] Hethcote, H. W., An immunization model for a heterogeneous population, Theor. Population Biol.14 (1978) 338-349. · Zbl 0392.92009
[16] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev.43 (2001) 525-546. · Zbl 0979.65007
[17] Hu, Z. X., Ma, W. B. and Ruan, S. G., Analysis of SIR epidemic models with nonlinear incidence rate and treatment, Math. Biosci.238 (2012) 12-20. · Zbl 1250.92031
[18] Hui, J. and Chen, L. S., Impulsive vaccination of SIR epidemic models with nonlinear incidence rates, Discrete Contin. Dyn. Syst. Ser. B4 (2004) 595-605. · Zbl 1100.92040
[19] Hui, J. and Zhu, D. M., Global stability and periodicity on SIS epidemic models with backward bifurcation, Comput. Math. Appl.50 (2005) 1271-1290. · Zbl 1078.92058
[20] Hyman, J. M. and Li, J., Differential susceptibility epidemic models, J. Math. Biol.50 (2005) 626-644. · Zbl 1066.92044
[21] Iggidr, A., Sallet, G. and Souza, M. O., On the dynamics of a class of multi-group models for vector-borne diseases, J. Math. Anal. Appl.441 (2016) 723-743. · Zbl 1357.92071
[22] Imhof, L. and Walcher, S., Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Eqs.217 (2005) 26-53. · Zbl 1089.34041
[23] Ji, C. Y., Jiang, D. Q. and Shi, N. Z., Multigroup SIR epidemic model with stochastic perturbation, Phys. A390 (2011) 1747-1762.
[24] Ji, C. Y., Jiang, D. Q., Yang, Q. S. and Shi, N. Z., Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Autom. J. IFAC48 (2012) 121-131. · Zbl 1244.93154
[25] Koide, C. and Seno, H., Sex ratio features of two-group SIR model for asymmetric transmission of heterosexual disease, Math. Comput. Model23 (1996) 67-91. · Zbl 0846.92025
[26] Lajmanovich, A. and York, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci.28 (1976) 221-236. · Zbl 0344.92016
[27] Li, J. Q. and Ma, Z., Qualitative analyses of SIS epidemic model with vaccination and varying total population size, Math. Comput. Model35 (2002) 1235-1243. · Zbl 1045.92039
[28] Mao, X. R., Stochastic Differential Equations and Applications, 2nd edn. (Horwood, Chichester, 2008).
[29] Nakata, Y. and Kuniya, T., Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl.363 (2010) 230-237. · Zbl 1184.34056
[30] Rass, L. and Radcliffe, J., Global asymptotic convergence results for multitype models, Int. J. Appl. Math. Comput. Sci.10 (2000) 63-79. · Zbl 0978.92026
[31] Shu, H. Y., Fan, D. J. and Wei, J. J., Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. Real World Appl.13 (2012) 1581-1592. · Zbl 1254.92085
[32] Tornatore, E., Buccellato, S. M. and Vetro, P., Stability of a stochastic SIR system, Phys. A354 (2005) 111-126.
[33] Vargas-De-León, C., On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, Chaos Solitons Fractals44 (2011) 1106-1110. · Zbl 1355.92130
[34] Yang, Q. S. and Mao, X. R., Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations, Nonlinear Anal. Real World Appl.14 (2013) 1434-1456. · Zbl 1263.92042
[35] Yu, J. J., Jiang, D. Q. and Shi, N. Z., Global stability of two-group SIR model with random perturbation, J. Math. Anal. Appl.360 (2009) 235-244. · Zbl 1184.34064
[36] Yuan, C. J., Jiang, D. Q., O’Regan, D. and Agarwal, R. P., Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun. Nonlinear Sci. Numer. Simul.17 (2012) 2501-2516. · Zbl 1243.92047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.