×

Integer sequences connected with extensions of the Bell polynomials. (English) Zbl 1387.11019

Summary: The Encyclopedia of Integer Sequences [http://oeis.org/] includes some sequences that are connected with the Bell numbers and that have a particular combinatorial meaning. In this article, we find a general meaning for framing sequences, including the above mentioned ones. Furthermore, by using Laguerre-type derivatives, we derive the Laguerre-type Bell numbers of higher order, showing, as a by-product, that it is possible to construct new integer sequences which are not included in the Encyclopedia.

MSC:

11B73 Bell and Stirling numbers
05A17 Combinatorial aspects of partitions of integers
11P81 Elementary theory of partitions

Software:

OEIS

References:

[1] G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998. · Zbl 0996.11002
[2] S. Barnard and J. M. Child, Higher Algebra, Macmillan & Co, 1965. · JFM 63.0033.05
[3] E. T. Bell, Exponential polynomials, Ann. of Math., 35 (1934), 258-277. · Zbl 0009.21202
[4] E. T. Bell, The iterated exponential integers, Ann. of Math., 39 (1938), 539-557. 11 · Zbl 0019.15001
[5] A. Bernardini, G. Dattoli and P. E. Ricci, L-exponentials and higher order Laguerre polynomials, in Proc. of the Fourth International Conference of the Society for Special Functions and their Applications (SSFA), Soc. Spec. Funct. Appl., 2003, pp. 13-26. · Zbl 1077.33010
[6] A. Bernardini and P. E. Ricci, Bell polynomials and differential equations of Freud-type polynomials, Math. Comput. Modelling, 36 (2002), 1115-1119. · Zbl 1029.33003
[7] A. Bernardini, P. Natalini and P. E. Ricci, Multi-dimensional Bell polynomials of higher order, Comput. Math. Appl., 50 (2005), 1697-1708. · Zbl 1113.33025
[8] C. Cassisa and P. E. Ricci, Orthogonal invariants and the Bell polynomials, Rend. Mat. Appl., 20 (2000), 293-303. · Zbl 1005.47027
[9] G. Dattoli and P. E. Ricci, Laguerre-type exponentials and the relevant L-circular and L-hyperbolic functions, Georgian Math. J., 10 (2003), 481-494. · Zbl 1045.33001
[10] A. Di Cave and P. E. Ricci, Sui polinomi di Bell ed i numeri di Fibonacci e di Bernoulli, Matematiche (Catania), 35 (1980), 84-95. · Zbl 0534.33008
[11] F. Fa‘a di Bruno, Th´eorie des Formes Binaires, Brero, 1876. · JFM 08.0056.02
[12] D. Fujiwara, Generalized Bell polynomials, Sugaku, 42 (1990), 89-90. · Zbl 0728.11016
[13] J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. · Zbl 0060.08415
[14] K. K. Kataria and P. Vellaisamy, Simple parametrization methods for generating Ado mian polynomials, Appl. Anal. Discrete Math., 10 (2016), 168-185. · Zbl 1474.41011
[15] K. K. Kataria and P. Vellaisamy, Some results associated with Adomian and Bell poly nomials, available at https://arxiv.org/pdf/1608.06880v1.pdf, 2007.
[16] T. Isoni, P. Natalini and P. E. Ricci, Symbolic computation of Newton sum rules for the zeros of orthogonal polynomials, in Advanced Topics in Mathematics and Physics: Proc. of the Workshop “Advanced Special Functions and Integration Methods” 2000, Aracne Editrice (2001), pp. 97-112. · Zbl 1013.33009
[17] T. Isoni, P. Natalini and P. E. Ricci, Symbolic computation of Newton sum rules for the zeros of polynomial eigenfunctions of linear differential operators, Numer. Algorithms, 28(2001), 215-227. · Zbl 0997.65102
[18] P. Natalini and P. E. Ricci, An extension of the Bell polynomials, Comput. Math. Appl., 47(2004), 719-725. · Zbl 1080.11019
[19] P. Natalini and P. E. Ricci, Laguerre-type Bell polynomials, Int. J. Math. Math. Sci., 2006(2006), 1-7. 12 · Zbl 1113.33012
[20] P. Natalini and P. E. Ricci, Bell polynomials and modified Bessel functions of half integral order, Appl. Math. Comput., 268 (2015), 270-274. · Zbl 1410.11020
[21] P. Natalini and P. E. Ricci, Remarks on Bell and higher order Bell polynomials and numbers, Cogent Math., 3 (2016), 1-15. · Zbl 1430.11035
[22] S. Noschese and P. E. Ricci, Differentiation of multivariable composite functions and Bell polynomials, J. Comput. Anal. Appl., 5 (2003), 333-340. · Zbl 1090.26006
[23] P. N. Rai and S. N. Singh, Generalization of Bell polynomials and related operatorial formula, (in Hindi), Vijnana Parishad Anusandhan Patrika, 25 (1982), 251-258.
[24] J. Riordan, An Introduction to Combinatorial Analysis, J Wiley & Sons, 1958. · Zbl 0078.00805
[25] D. Robert, Invariants orthogonaux pour certaines classes d’operateurs, Ann. Math. Pures Appl., 52 (1973), 81-114. · Zbl 0226.47017
[26] S. M. Roman, The Fa‘a di Bruno Formula, Amer. Math. Monthly, 87 (1980), 805-809. · Zbl 0513.05009
[27] S. M. Roman and G. C. Rota, The umbral calculus, Adv. Math., 27 (1978), 95-188. · Zbl 0375.05007
[28] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences. Published elec tronically at http://oeis.org, 2016. · Zbl 1274.11001
[29] O. V. Viskov, A commutative-like noncommutation identity, Acta Sci. Math. (Szeged), 59(1994), 585-590. · Zbl 0827.12004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.