×

Feedback stabilization of the incompressible Navier-Stokes equations coupled with a damped elastic system in two dimensions. (English) Zbl 1386.93153

Summary: In this article we study a system coupling the incompressible Navier-Stokes equations with an elastic structure governed by a damped wave equation in a two dimensional channel with periodic boundary conditions. The elastic structure is located at the upper boundary of the domain occupied by the fluid. The domain occupied by the fluid depends on the displacement of the elastic structure, and therefore it depends on time. We prove that this coupled system may be stabilized around the steady state zero, at any exponential decay rate, by a Dirichlet control acting in the lower boundary of the fluid domain.

MSC:

93C20 Control/observation systems governed by partial differential equations
93B52 Feedback control
93D15 Stabilization of systems by feedback
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Badra, M., Takahashi, T.: Feedback boundary stabilization of 2D fluid-structure interaction systems. https://hal.archives-ouvertes.fr/hal-01370000 (2016) · Zbl 1357.93054
[2] Bensoussan, A., Da Prato, G., Delfour, M., Mitter, S.K.: Representation and control of infinite dimensional systems. Systems and Control: Foundations & Applications, 2nd edn. Birkhäuser Boston, Inc., Boston (2007) · Zbl 1117.93002 · doi:10.1007/978-0-8176-4581-6
[3] Burns, J.A., King, B.B.: A note on the mathematical modelling of damped second order systems. J. Math. Syst. Estim. Control 8, 1-12 (1998)
[4] Chen, G., Russell, D.L.: A mathematical model for linear elastic systems with structural damping. Q. Appl. Math. 39, 433-454 (1982) · Zbl 0515.73033 · doi:10.1090/qam/644099
[5] Chen, S.P., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems. Pac. J. Math. 136, 15-55 (1989) · Zbl 0633.47025 · doi:10.2140/pjm.1989.136.15
[6] Casas, E., Matéos, M., Raymond, J.-P.: Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var. 15, 782-809 (2009) · Zbl 1175.49027 · doi:10.1051/cocv:2008049
[7] Fabre, C., Lebeau, G.: Prolongement unique des solutions de l’equation de Stokes. Commun. Partial Differ. Equ. 21(3-4), 573-596 (1996) · Zbl 0849.35098 · doi:10.1080/03605309608821198
[8] Grandmont, C., Lukáčová-Medvid’ová, M., Nečasová, S.: Mathematical and numerical analysis of some FSI problems. Fluid-structure interaction and biomedical applications, pp. 1-77, Adv. Math. Fluid Mech. Birkhäuser/Springer, Basel (2014) · Zbl 1365.74066
[9] Grubb, G., Solonnikov, V.A.: Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand. 69(2), 217-290 (1991). (1992) · Zbl 0766.35034 · doi:10.7146/math.scand.a-12380
[10] Kato, T.: Perturbation theory for linear operators, Corrected Printing of the Second Edition. Springer, Heidelberg (1980) · Zbl 0435.47001
[11] Lequeurre, J.: Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation. J. Math. Fluid Mech. 15, 249-271 (2013) · Zbl 1406.76009 · doi:10.1007/s00021-012-0107-0
[12] Matignon, D., Ndiaye, M., Raymond, J.-P.: Feedback stabilization around a non zero stationary solution of a 3D fluid-structure model with a boundary control (in preparation) · Zbl 0633.47025
[13] Ndiaye, M., Matignon, D., Raymond, J.-P.: Feedback stabilization of a 3D fluid-structure model with a boundary control, In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, July 7-11, University of Gröningen, Gröningen (2014)
[14] Nguyen, P.A., Raymond, J.-P.: Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53, 3006-3039 (2015) · Zbl 1327.93194 · doi:10.1137/13091364X
[15] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983) · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[16] Raymond, J.-P.: Feedback stabilization of a fluid-structure model. SIAM J. Control Optim. 48, 5398-5443 (2010) · Zbl 1213.93177 · doi:10.1137/080744761
[17] Raymond, J.-P.: Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 921-951 (2007) · Zbl 1136.35070 · doi:10.1016/j.anihpc.2006.06.008
[18] Raymond, J.-P.: Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1537-1564 (2010) · Zbl 1213.35344 · doi:10.3934/dcdsb.2010.14.1537
[19] Raymond, J.-P., Vanninathan, M.: A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. J. Math. Pures Appl. (9) 102(3), 546-596 (2014) · Zbl 1303.35060
[20] Rudin, W.: Real and Complex Analysis, McGraw-Hill, New York (1966) · Zbl 0142.01701
[21] Triggiani, R.: Regularity of some structurally damped problems with point control and with boundary control. J. Math. Anal. Appl. 161, 299-331 (1991) · Zbl 0771.93013 · doi:10.1016/0022-247X(91)90332-T
[22] Triggiani, R.: Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation. Nonlinear Anal. 71, 4967-4976 (2009) · Zbl 1181.35034 · doi:10.1016/j.na.2009.03.073
[23] Turek, S., Hron, J., Mádlikík, M., Razzaq, M., Wobker, H., Acker, J.-F.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with applications to hemodynamics. In: Bungartz, H.-J., et al. (eds.) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 193-220. Springer, Berlin (2010) · Zbl 1210.76118
[24] van Zuijlen, A.H., Bijl, H.: Multi-Level Accelerated sub-iterations for fluid-structure interaction. In: Bungartz, H.-J., et al. (eds.) Fluid-Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 1-25. Springer, Berlin (2010) · Zbl 1216.74007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.