×

Consensus control of fractional-order systems based on delayed state fractional order derivative. (English) Zbl 1386.93014

Summary: In this paper, the delayed state fractional order derivative (DSFOD) is introduced into the existing traditional consensus protocol aiming to improve the robustness of fractional-order multi-agent systems against communication time delay. Both of communication channels with time-delay and without time-delay cases are considered. Based on the frequency-domain analysis and algebraic graph theory, it is shown that properly choosing the intensity of DSFOD can improve the robustness of fractional-order multi-agent systems against communication delay. Finally, a simulated example with simulations is presented to confirm the correctness and effectiveness of the theoretical results.

MSC:

93A14 Decentralized systems
34A08 Fractional ordinary differential equations
93C15 Control/observation systems governed by ordinary differential equations
93B35 Sensitivity (robustness)
Full Text: DOI

References:

[1] LizaZ. and A.Deshmukh, “Performance prediction of an unmanned airborne vehicle multi‐agent system,” Eur. J. Oper. Res., Vol. 172 No.2, pp.680-695 (2006). · Zbl 1168.90669
[2] CuckerF. and S.Smale, “Emergent behavior in flocks,” IEEE Trans. Autom. Control, Vol. 52 No.5, pp.852-862 (2007). · Zbl 1366.91116
[3] Olfati‐SaberR., “Flocking for multi‐agent dynamic systems: algorithms and theory,” IEEE Trans. Autom. Control, Vol. 51 No.3, pp.401—420 (2006). · Zbl 1366.93391
[4] LiT. and JFZhang, “Mean square average‐consensus under measurement noise and fixed topologies Necessary and sufficient conditions,” Automatica, Vol. 45 No.8, pp.1929-1936 (2009). · Zbl 1185.93006
[5] HuJ. P. and Y. G.Hong, “Leader‐following coordination of multi‐agent systems with coupling time delays,” Physica A, Vol. 374 No.2, pp.853-863 (2007).
[6] SuH. S., M. Z. Q.Chen, J.Lam, and Z. L.Lin, “Semi‐global leader‐following consensus of linear multi‐agent systems with input saturation via low gain feedback,” IEEE Trans. Circuits Syst. I: Regul. Pap., Vol. 60 No.7, pp.1881-1889 (2013). · Zbl 1468.93035
[7] Olfati‐SaberR. and R. M.Murray, “Consensus problem in networks of agents with switching topology and time‐delays,” IEEE Trans. Autom. Control, Vol. 49 No.9, pp.1520-1533 (2004). · Zbl 1365.93301
[8] YangX. G., J. X.Xi, J. Y.Wu, and Z. C.Yao, “Guaranteed‐cost consensus control for high‐order linear swarm systems,” Asian J. Control, Vol. 8 No.2, pp.562-568 (2016). · Zbl 1346.93043
[9] TangY., H. J.Gao, W. B.Zhang, and J.Kurths, “Leader‐following consensus of a class of stochastic delayed multi‐agent systems with partial mixed impulses,” Automatica, Vol. 53, pp. 346-354 (2015). · Zbl 1371.93020
[10] LiuX. L., B. G.Xu, and L. H.Xie, “Distributed tracking control of second‐order multi‐agent systems under measurement noises,” J Syst. Sci. Complex, Vol. 27 No.5, pp.853-865 (2014). · Zbl 1327.93394
[11] XiaoF., L.Wang, J.Chen, and Y. P.Gao, “Finite‐time formation control for multi‐agent systems,” Automatica, Vol. 45 No.11, pp.2605-2611 (2009). · Zbl 1180.93006
[12] FaxJ. and R. M.Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Autom. Control, Vol. 49 No.9, pp.1465-1476 (2004). · Zbl 1365.90056
[13] ZhouZ. W., H. T.Fang, and Y. G.Hong, “Distributed estimation for moving target based on state‐consensus strategy,” IEEE Trans. Autom. Control, Vol. 58 No.8, pp.2096-2101 (2013). · Zbl 1369.93665
[14] Olfati‐SaberR. and J.Shamma. Consensus filters for sensor networks and distributed sensor fusion. In Proc. 44th IEEE Conf. Decis. Control: Seville, Spain, (2005) pp. 6698-6703.
[15] WangW. D., Z. H. P.Wang, and H.Wang, “Cooperative adaptive fuzzy output feedback control for synchronization of nonlinear multi‐agent systems in the presence of input saturation,” Asian J. Control, Vol. 18 No.2, pp.619-630 (2016). · Zbl 1346.93238
[16] MaM. H., J.Zhou, and J. P.Cai, “Pinning synchronization in networked lagrangian systems,” Asian J. Control, Vol. 18 No.2, pp.569-580 (2016). · Zbl 1346.93032
[17] XiaoF., T. W.Chen, and H. J.Gao, “Synchronous hybrid event and time‐driven consensus in multi‐agent networks with time delays,” IEEE T. Cybern., Vol. 46 No.5, pp.1165-1174 (2016).
[18] SuH. S., Z. H.Rong, M. Z. Q.Chen, X. F.Wang, G. RChen, and H. W.Wang, “Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks,” IEEE T. Cybern., Vol. 43 No.1, pp.394-399 (2013).
[19] LynchN.. Distributed Algorithms, Morgan Kaufmann, San Francisco, CA, (1996). · Zbl 0877.68061
[20] PodlubnyI.. Fractional Deferential Equations, Academic Press, San Diego, (1999). · Zbl 0924.34008
[21] OldhamK. B. and J.Spanier. The Fractional Calculus, Academic Press, New York, (1974). · Zbl 0292.26011
[22] KaczorekT.. Selected Problems of Fractional Systems Theory, Springer‐Verlag Press, Berlin, (2011). · Zbl 1221.93002
[23] CaoY. C., Y.Li, W.Ren, and Y. Q.Chen. Distributed coordination algorithms for multiple fractional‐order systems. In Proc. 47th IEEE Conf. Decis. Control: Cancun, Mexico, (2008) pp. 2920-2925.
[24] CaoY. C., Y.Li, W.Ren, and Y. Q.Chen, “Distributed coordination of networked fractional‐order systems,” IEEE Trans. Syst., Man, Cybern. B, Cybern., (2010) Vol. 40 No.2, pp.362-370.
[25] ShenJ., J. D.Cao, and J. Q.Lu, “Consenus of fractional‐order systems with non‐uniform input and communication delays,” J. Syst. Control Eng., (2011) Vol. 226 No.2, pp.271-283.
[26] LuJ. Q., J.Shen, J. D.Cao, and J.Kurths. 2013. Consensus of networked multi‐agent systems with delays and fractional‐order dynamics. In Consensus and Synchronization in Complex Networks, In KocarevL. (ed.) (ed.). Springer, New York; 69-110.
[27] LiuX. L., X. P.Li, and Z.Zhang. Improvement for consensus performance of fractional‐order systems with communication delays. In Proc. 34th Chinese Control Conf., Nanjing, China, pp. 1470-1475 (2014).
[28] ZhuW., M. S.Wang, and C. D.Yang. Leader‐following consensus of fractional‐order multi‐agent systems with general linear models. In Proc. 11th World Congr. Intelligent Control Autom., Shenyang, China, pp. 3493-3496 (2014).
[29] LimY. H., K. K.Oh, and H. S.Ahn, “Stability and stabilization of fractional‐order linear systems subject to input saturation,” IEEE Trans. Autom. Control, Vol. 58 No.4, pp.1062-1067 (2013). · Zbl 1369.93495
[30] YuZ. Y., H. J.Jiang, and C.Hu, “Leader‐following consensus of fractional‐order multi‐agent systems under fixed topology,” Neurocoputing, Vol. 149, pp. 613-620 (2015).
[31] YinX. X., D.Yue, and S. L.Hu, “Consensus of fractional‐order heterogeneous multi‐agent systems,” IET Contr. Theory Appl., Vol. 7 No.2, pp.314-322 (2013).
[32] SunW., Y.Li, C. P.Li, and Y. Q.Chen, “Convergence speed of a fractional‐order consensus algorithm over undirected scale‐free network,” Asian J. Control, Vol. 13 No.6, pp.936-946 (2011). · Zbl 1263.93013
[33] CaoY. C. and W.Ren, “Distributed formation control for fractional‐order systems: dynamic interaction and absolute/relative damping,” Syst. Control Lett., Vol. 59 No.3-4, pp.233-240 (2010). · Zbl 1222.93006
[34] LiuX. L., B. G.Xu, and L. H.Xie, “Distributed containment control of networked fractional‐order systems with delay‐dependent communications,” J. Appl. Math., Vol. 840873, pp. 1-13 (2012). · Zbl 1251.93096
[35] ZengC. B., Q. G.Yang, and J. W.Wang, “Chaos and mixed synchronization of a new fractional‐order system with one saddle and two stable node‐foci,” Nonlinear Dyn., Vol. 65, pp. 457-466 (2011). · Zbl 1286.34016
[36] WangJ. W., Q. H.Ma, and L.Zeng, “Observer‐based synchronization in fraction‐order leader‐follower complex networks,” Nonlinear Dyn., Vol. 73, pp. 921-929 (2013). · Zbl 1281.93005
[37] HouZ. G., L.Chen, and M.Tan, “Decentralized robust adaptive control for the multiagent system consensus problem using neural networks,” IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 39 No.3, pp.636-647 (2009).
[38] ShahvaliM. and K.Shojaei, “Distributed adaptive neural control of nonlinear multi‐agent systems with unknown control directions,” Nonlinear Dyn., Vol. 83 No.4, pp.2213-2228 (2016). · Zbl 1353.93063
[39] ZhaoJ., Z. Y.Han, W.Pedrycz, and W.Wang, “Granular model of long‐term prediction for energy system in steel industry,” IEEE Trans. Cybern., Vol. 46 No.2, pp.388-400 (2016).
[40] WangT., H. J.Gao, and J. B.Qiu, “A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control,” IEEE Trans. Neural Netw. Learn. Syst., Vol. 27 No.2, pp.416-425 (2016).
[41] WangT., H. J.Gao, and J. B.Qiu, “A Combined Fault‐Tolerant and Predictive Control for Network‐Based Industrial Processes,” IEEE Trans. Ind. Electron., Vol. 63 No.4, pp.2529-2536 (2016).
[42] WangT., J. B.Qiu, and H. J.Gao, “Adaptive neural control of stochastic nonlinear time‐delay systems with multiple constraints,” IEEE Trans. Syst., Man, Cybern., Syst., (2016.) DOI: 10.1109/TSMC.2016.2562511.
[43] LiuY. Q., R.Ganigué, K.Sharma, and Z. G.Yuan, “Event‐driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks,” Water Res., Vol. 98 No.1, pp.376-383 (2016).
[44] YangH. Y., X. L.Zhu, and K. C.Cao, “Distributed coordination of fractional order multi‐agent systems with communication delays,” Fract. Calc. Appl. Anal., Vol. 14 No.1, pp.23-37 (2014). · Zbl 1312.93086
[45] LiuS. D., S. Y.Shi, S. K.Liu, and F. M.Liang, “Bridge between weather and climate: fractional derivative,” Meteorological Sci. Tech., Vol. 35 No.1, pp.15-19. (2007)(In Chinese).
[46] LiC. P., F. R.Zhang, J.Kurths, and F. H.Zeng, “Equivalent system for a multiple‐rational‐order fractional differential system,” Phil. Trans. R. Soc. A, (2013) Vol. 371. 10.1098/rsta.2012.0156. · Zbl 1342.34012
[47] WuZ. H. and H. J.Fang, “Delayed‐state‐derivative feedback for improving consensus performance of second‐order delayed multi‐agent systems,” Int. J. Syst. Sci., Vol. 43 No.1, pp.140-152 (2012). · Zbl 1259.93015
[48] WuZ. H. and H. J.Fang, “Improvement for consensus perfomance of multi‐agent systems based on delayed‐state‐derivative feedback,” J. Syst. Eng. Electron., Vol. 23 No.1, pp.137-144 (2012).
[49] RenW., “On consensus algorithms for double‐integrator dynamics,” IEEE Trans. Autom. Control, Vol. 53 No.6, pp.1503-1509 (2008). · Zbl 1367.93567
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.