×

Approximation algorithms for constructing spanning \(K\)-trees using stock pieces of bounded length. (English) Zbl 1386.90162

Summary: Given a weighted graph \(G\) on \(n+1\) vertices, a spanning \(K\)-tree \(T_K\) of \(G\) is defined to be a spanning tree \(T\) of \(G\) together with \(K\) distinct edges of \(G\) that are not edges of \(T\). The objective of the minimum-cost spanning \(K\)-tree problem is to choose a subset of edges to form a spanning \(K\)-tree with the minimum weight. In this paper, we consider the constructing spanning K-tree problem that is a generalization of the minimum-cost spanning \(K\)-tree problem. We are required to construct a spanning \(K\)-tree \(T_K\) whose \(n+K\) edges are assembled from some stock pieces of bounded length \(L\). Let \(c_0\) be the sale price of each stock piece of length \(L\) and \(k(T_K)\) the number of minimum stock pieces to construct the \(n+K\) edges in \(T_K\). For each edge \(e\) in \(G\), let \(c(e)\) be the construction cost of that edge \(e\). Our new objective is to minimize the total cost of constructing a spanning \(K\)-tree \(T_K\), i.e., \(\min_{T_K}\{\sum_{e\in T_K}c(e)+k(T_K)\cdot c_0\}\). The main results obtained in this paper are as follows. (1) A 2-approximation algorithm to solve the constructing spanning \(K\)-tree problem. (2) A \(\frac{3}{2}\)-approximation algorithm to solve the special case for constant construction cost of edges. (3) An APTAS for this special case.

MSC:

90C35 Programming involving graphs or networks
90C59 Approximation methods and heuristics in mathematical programming

Software:

VRP
Full Text: DOI

References:

[1] Berge, C., Ghouila-Houri, A.: Programming, Games, and Transportation Networks. John Wiley, New York (1965) · Zbl 0138.15505
[2] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Management Sciences Research Report No.388, Carnegie-Mellon University, Pittsburgh (1976) · Zbl 1489.90150
[3] Christofides, N., Mingozzi, A., Toth, P.: Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Math. Programm. 20(3), 255-282 (1981) · Zbl 0461.90067 · doi:10.1007/BF01589353
[4] Coffman, EG; Garey, MR; Johnson, DS; Hochbaum, D. (ed.), Approximation algorithms for bin packing: a survey (1996), Boston
[5] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269-271 (1959) · Zbl 0092.16002 · doi:10.1007/BF01386390
[6] Fischetti, M., Toth, P.: An efficient algorithm for the min-sum arborescence problem on complete digraphs. ORSA J. Comput. 5(4), 426-434 (1993) · Zbl 0789.90082 · doi:10.1287/ijoc.5.4.426
[7] Fisher, M.L.: Optimal solution of vehicle routing problems using minimum \[KK\]-trees. Oper. Res. 42(4), 626-642 (1994) · Zbl 0815.90066 · doi:10.1287/opre.42.4.626
[8] Fisher, M.L.: A polynomial algorithm for the degree-constrained minimum \[KK\]-tree problem. Oper. Res. 42(4), 775-779 (1994) · Zbl 0815.90131 · doi:10.1287/opre.42.4.775
[9] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979) · Zbl 0411.68039
[10] Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138-1162 (1970) · Zbl 0226.90047 · doi:10.1287/opre.18.6.1138
[11] Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. II. Math. Program. 1, 6-25 (1971) · Zbl 0232.90038 · doi:10.1007/BF01584070
[12] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proce. Am. Math. Soc. 7, 48-50 (1956) · Zbl 0070.18404 · doi:10.1090/S0002-9939-1956-0078686-7
[13] Li, J.P., Guan, L., Ding, H.L., Li, W.D.: Approximations for constructing tree-form structures by specific material with fixed length. Optim. Lett. 10(6), 1337-1345 (2016). doi:10.1007/s11590-015-0935-y · Zbl 1353.90169 · doi:10.1007/s11590-015-0935-y
[14] Martinhon, C., Lucena, A., Maculan, N.: Stronger \[KK\]-tree relaxations for the vehicle routing problem. Eur. J. Oper. Res. 158, 56-71 (2004) · Zbl 1061.90023 · doi:10.1016/S0377-2217(03)00353-9
[15] Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389-1401 (1957) · doi:10.1002/j.1538-7305.1957.tb01515.x
[16] Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563-581 (1977) · Zbl 0364.90104 · doi:10.1137/0206041
[17] Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, The Netherlands (2003) · Zbl 1041.90001
[18] Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res. Logist. 41, 579-585 (1994) · Zbl 0809.90111 · doi:10.1002/1520-6750(199406)41:4<579::AID-NAV3220410409>3.0.CO;2-G
[19] Tarjan, R.E.: Minimum Spanning Trees, in Chapter 6, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics. SIAM, Philadelphia, PA (1983) · Zbl 0584.68077
[20] Vazirani, V.V.: Approximation Algorithms. Springer-Verlag, Berlin (2001) · Zbl 0999.68546
[21] Westerlund, A., Gothe-Lundgren, M., Larsson, T.: A note on relatives to the Held and Karp 1-tree problem. Oper. Res. Lett. 34, 275-282 (2006) · Zbl 1113.90165 · doi:10.1016/j.orl.2005.04.010
[22] Westerlund, A., Gothe-Lundgren, M., Larsson, T.: A stabilized column generation scheme for the traveling salesman subtour problem. Discret. Appl. Math. 154(15), 2212-2238 (2006) · Zbl 1111.90097 · doi:10.1016/j.dam.2005.04.012
[23] Yamamoto, Y.: The Held-Karp algorithm and degree-constrained minimum \[11\]-trees. Math. Program. 15, 228-231 (1978) · Zbl 0387.90097 · doi:10.1007/BF01609023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.