×

Scalar scattering from charged black holes on the brane. (English) Zbl 1386.83093

Summary: The differential scattering cross section of massless scalar fields localized on the 3-brane of charged static black holes in the ADD model is analyzed. While results valid over the entire range of the scattering angle can be obtained only via a numerical approach, analytical results can be obtained via the geodesic, Born and glory approximations. Comparison between numerical and analytical results leads to excellent agreement. The increase of the charge intensity has the consequence of increasing the width of the interference fringes in the scattering cross section. Its influence on the intensity of the scattered flux, however, depends on the dimensionality of the spacetime. Analyses for the special cases of uncharged and extremely charged black holes are included.

MSC:

83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81U05 \(2\)-body potential quantum scattering theory

References:

[1] Abbott, B. P.; Abbott, B. P.; Abbott, B. P., Observation of gravitational waves from a binary black hole merger. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. GW170104: observation of a 50-solar-mass binary black hole coalescence at Redshift 0.2, Phys. Rev. Lett.. Phys. Rev. Lett.. Phys. Rev. Lett., 118, (2017) · doi:10.1103/PhysRevLett.118.221101
[2] Begelman, M. C., Evidence for black holes, Science, 300, 1898-1903, (2003) · doi:10.1126/science.1085334
[3] Johannsen, T., Sgr A* and general relativity, Class. Quantum Grav., 33, (2016) · doi:10.1088/0264-9381/33/11/113001
[4] Johannsen, T.; Broderick, A. E.; Plewa, P. M.; Chatzopoulos, S.; Doeleman, S. S.; Eisenhauer, F.; Fish, V. L.; Genzel, R.; Gerhard, O.; Johnson, M. D., Testing general relativity with the shadow size of Sgr A*, Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.031101
[5] Noble, S. C.; Leung, P. K.; Gammie, C. F.; Book, L. G., Simulating the emission and outflows from accretion discs, Class. Quantum Grav., 24, S259-S274, (2007) · Zbl 1117.85019 · doi:10.1088/0264-9381/24/12/S17
[6] Bohn, A.; Throwe, W.; Hébert, F.; Henriksson, K.; Bunandar, D.; Scheel, M. A.; Taylor, N. W., What does a binary black hole merger look like?, Class. Quantum Grav., 32, (2015) · doi:10.1088/0264-9381/32/6/065002
[7] Falcke, H.; Melia, F.; Agol, E., Viewing the shadow of the black hole at the galactic center, Astrophys. J., 528, L13, (2000) · doi:10.1086/312423
[8] Unruh, W. G., Experimental black-hole evaporation?, Phys. Rev. Lett., 46, 1351-1353, (1981) · doi:10.1103/PhysRevLett.46.1351
[9] Barceló, C.; Liberati, S.; Visser, M.; Barceló, C.; Liberati, S.; Visser, M., Analogue gravity. Analogue gravity, Living Rev. Relativ.. Living Rev. Relativ., 14, 3, (2005) · Zbl 1316.83022 · doi:10.12942/lrr-2011-3
[10] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.; Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., The hierarchy problem and new dimensions at a millimeter. New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B. Phys. Lett. B, 436, 257-263, (1998) · Zbl 1355.81103 · doi:10.1016/S0370-2693(98)00860-0
[11] Randall, L.; Sundrum, R., Large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370-3373, (1999) · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[12] Cavaglià, M., Black hole and brane production in TeV gravity: a review, Int. J. Mod. Phys. A, 18, 1843-1882, (2003) · Zbl 1035.83023 · doi:10.1142/S0217751X03013569
[13] Kanti, P., Black holes in theories with large extra dimensions: a review, Int. J. Mod. Phys. A, 19, 4899-4951, (2004) · Zbl 1066.83001 · doi:10.1142/S0217751X04018324
[14] Emparan, R.; Reall, H. S., Black holes in higher dimensions, Living Rev. Relativ., 11, 6, (2008) · Zbl 1166.83002 · doi:10.12942/lrr-2008-6
[15] Hawking, S. W., Particle creation by black holes, Commun. Math. Phys., 43, 199-220, (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[16] Weinfurtner, S.; Tedford, E. W.; Penrice, M. C J.; Unruh, W. G.; Lawrence, G. A., Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., 106, (2011) · doi:10.1103/PhysRevLett.106.021302
[17] Torres, T.; Patrick, S.; Coutant, A.; Richartz, M.; Tedford, E. W and Weinfurtner S., Rotational superradiant scattering in a vortex flow, Nature Phys., 13, 833-836, (2017) · doi:10.1038/nphys4151
[18] Park, S. C., Black holes and the LHC: a review, Prog. Part. Nucl. Phys., 67, 617-650, (2012) · doi:10.1016/j.ppnp.2012.03.004
[19] Sirunyan, A. M., Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at \(\sqrt{s} = 13\) TeV, Phys. Lett. B, 774, 279-307, (2017) · doi:10.1016/j.physletb.2017.09.053
[20] Aaboud, M., Search for new phenomena in high-mass final states with a photon and a jet from {\it pp} collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector, (2017)
[21] Emparan, R.; Horowitz, G. T.; Myers, R. C., Black holes radiate mainly on the brane, Phys. Rev. Lett., 85, 499-502, (2000) · Zbl 1369.83039 · doi:10.1103/PhysRevLett.85.499
[22] Kanti, P.; March-Russell, J., Calculable corrections to brane black hole decay: The scalar case, Phys. Rev. D, 66, (2002) · doi:10.1103/PhysRevD.66.024023
[23] Kanti, P.; March-Russell, J., Calculable corrections to brane black hole decay. II. Greybody factors for spin 1/2 and 1, Phys. Rev. D, 67, (2003) · doi:10.1103/PhysRevD.67.104019
[24] Harris, C. M.; Kanti, P., Hawking radiation from a \((4+n)\)-dimensional black hole: exact results for the Schwarzschild phase, J. High Energy Phys., JHEP10(2003), 014, (2003) · doi:10.1088/1126-6708/2003/10/014
[25] Jung, E.; Kim, S. H.; Park, D. K., Low-energy absorption cross section for massive scalar and Dirac fermion by (4  +  n)-dimensional Schwarzschild black hole, J. High Energy Phys., JHEP09(2004), 005, (2004) · doi:10.1088/1126-6708/2004/09/005
[26] Kanti, P.; Grain, J.; Barrau, A., Bulk and brane decay of a \((4+n)\)-dimensional Schwarzschild-de Sitter black hole: scalar radiation, Phys. Rev. D, 71, (2005) · doi:10.1103/PhysRevD.71.104002
[27] Marinho, C. I S.; de Oliveira, E. S., Scattering of massless scalar waves from Schwarzschild-Tangherlini black holes on the brane, (2016)
[28] Jung, E.; Park, D. K., Absorption and emission spectra of an higher-dimensional Reissner-Nordström black hole, Nucl. Phys. B, 717, 272-303, (2005) · Zbl 1207.83032 · doi:10.1016/j.nuclphysb.2005.03.037
[29] Ida, D.; Oda, K-Y; Park, S. C.; Ida, D.; Oda, K-Y; Park, S. C., Rotating black holes at future colliders: greybody factors for brane fields. Rotating black holes at future colliders: greybody factors for brane fields, Phys. Rev. D. Phys. Rev. D, 69, (2004) · doi:10.1103/PhysRevD.69.049901
[30] Ida, D.; Oda, K-Y; Park, S. C., Rotating black holes at future colliders. II. Anisotropic scalar field emission, Phys. Rev. D, 71, (2005) · doi:10.1103/PhysRevD.71.124039
[31] Ida, D.; Oda, K-Y; Park, S. C., Rotating black holes at future colliders. III. Determination of black hole evolution, Phys. Rev. D, 73, (2006) · doi:10.1103/PhysRevD.73.124022
[32] Harris, C. M.; Kanti, P., Hawking radiation from a (4  +  {\it n})-dimensional rotating black hole on the brane, Phys. Lett. B, 633, 106-110, (2006) · Zbl 1247.83091 · doi:10.1016/j.physletb.2005.10.025
[33] Duffy, G.; Harris, C. M.; Kanti, P.; Winstanley, E., Brane decay of a (4  +  {\it n})-dimensional rotating black hole: spin-0 particles, J. High Energy Phys., JHEP09(2005), 049, (2005) · doi:10.1088/1126-6708/2005/09/049
[34] Casals, M.; Kanti, P.; Winstanley, E., Brane decay of a (4  +  {\it n})-dimensional rotating black hole II: spin-1 particles, J. High Energy Phys., JHEP02(2006), 051, (2006) · doi:10.1088/1126-6708/2006/02/051
[35] Casals, M.; Dolan, S. R.; Kanti, P.; Winstanley, E., Brane decay of a (4  +  {\it n})-dimensional rotating black hole. III: spin-1/2 particles, J. High Energy Phys., JHEP03(2007), 019, (2007) · doi:10.1088/1126-6708/2007/03/019
[36] Creek, S.; Efthimiou, O.; Kanti, P.; Tamvakis, K., Greybody factors for brane scalar fields in a rotating black hole background, Phys. Rev. D, 75, (2007) · doi:10.1103/PhysRevD.75.084043
[37] Toshmatov, B.; Stuchlík, Z.; Schee, J.; Ahmedov, B., Quasinormal frequencies of black hole in the braneworld, Phys. Rev. D, 93, (2016) · doi:10.1103/PhysRevD.93.124017
[38] Molina, C.; Pavan, A. B.; Torrejón, T. E M., Electromagnetic perturbations in new brane world scenarios, Phys. Rev. D, 93, (2016) · doi:10.1103/PhysRevD.93.124068
[39] Crispino, L. C B.; Dolan, S. R.; Oliveira, E. S., Scattering of massless scalar waves by Reissner-Nordström black holes, Phys. Rev. D, 79, (2009) · doi:10.1103/PhysRevD.79.064022
[40] Macedo, C. F B.; Leite, L. C S.; Oliveira, E. S.; Dolan, S. R.; Crispino, L. C B., Absorption of planar massless scalar waves by Kerr black holes, Phys. Rev. D, 88, (2013) · doi:10.1103/PhysRevD.88.064033
[41] Myers, R. C.; Perry, M. J., Black holes in higher dimensional space-times, Ann. Phys., 172, 304, (1986) · Zbl 0601.53081 · doi:10.1016/0003-4916(86)90186-7
[42] Chandrasekhar, S., The Mathematical Theory of Black Holes, (1983), Oxford: Clarendon, Oxford · Zbl 0511.53076
[43] Gottfried, K.; Yan, T-M, Quantum Mechanics: Fundamentals, (2003), New York: Springer, New York · Zbl 1033.81003
[44] Futterman, J. A H.; Handler, F. A.; Matzner, R. A., Scattering from Black Holes, (1988), Cambridge: Cambridge University Press, Cambridge · Zbl 1187.85003
[45] Darwin, C., The gravity field of a particle, Proc. R. Soc. A, 249, 180-194, (1959) · Zbl 0085.42603 · doi:10.1098/rspa.1959.0015
[46] Dolan, S. R.; Oliveira, E. S.; Crispino, L. C B., Scattering of sound waves by a canonical acoustic hole, Phys. Rev. D, 79, (2009) · doi:10.1103/PhysRevD.79.064014
[47] Visser, M., Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quantum Grav., 15, 1767-1791, (1998) · Zbl 0947.83029 · doi:10.1088/0264-9381/15/6/024
[48] Macedo, C. F B.; de Oliveira, E. S.; Crispino, L. C B., Scattering by regular black holes: planar massless scalar waves impinging upon a Bardeen black hole, Phys. Rev. D, 92, (2015) · doi:10.1103/PhysRevD.92.024012
[49] Matzner, R. A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T-R, Glory scattering by black holes, Phys. Rev. D, 31, 1869, (1985) · doi:10.1103/PhysRevD.31.1869
[50] Crispino, L. C B.; Dolan, S. R.; Higuchi, A.; de Oliveira, E. S., Inferring black hole charge from backscattered electromagnetic radiation, Phys. Rev. D, 90, (2014) · doi:10.1103/PhysRevD.90.064027
[51] Eiroa, E. F.; Romero, G. E.; Torres, D. F., Reissner-Nordström black hole lensing, Phys. Rev. D, 66, (2002) · doi:10.1103/PhysRevD.66.024010
[52] Bhadra, A., Gravitational lensing by a charged black hole of string theory, Phys. Rev. D, 67, (2003) · doi:10.1103/PhysRevD.67.103009
[53] Sereno, M., Weak field limit of Reissner-Nordström black hole lensing, Phys. Rev. D, 69, (2004) · doi:10.1103/PhysRevD.69.023002
[54] Yennie, D. R.; Ravenhall, D. G.; Wilson, R. N., Phase-shift calculation of high-energy electron scattering, Phys. Rev., 95, 500-512, (1954) · Zbl 0057.22601 · doi:10.1103/PhysRev.95.500
[55] Dolan, S.; Doran, C.; Lasenby, A., Fermion scattering by a Schwarzschild black hole, Phys. Rev. D, 74, (2006) · doi:10.1103/PhysRevD.74.064005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.