×

Various pointer states approaches to polar modular values. (English) Zbl 1386.81017

Summary: We theoretically analyze the polar decomposition for quantum modular values under various pointer states approaches. We consider both the finite-dimensional discrete pointer state and continuous pointer state cases. In contrast to that, a weak value of an observable is usually divided into its real and imaginary parts; here, we show that separation from the modulus and phase is necessary to a modular value. We show that the modulus of the modular value is related to the pointer post-selection conditional probability, and the phase of the modular value is connected to the summation of a geometric phase and an intrinsic phase. We also discuss a relationship between the modulus and phase, and therein, the derivative of the phase is related to the derivative of the logarithm of the modulus via a Berry-Simon-like connection which is in the form of a weak value. As a consequence, the modulus-phase relation allows us to obtain these polar components whenever the connection is specified. One of the possible applications of our results is to evaluate the weak value (the Berry-Simon-like connection) when the polar modular value is experimentally obtained.{
©2018 American Institute of Physics}

MSC:

81P15 Quantum measurement theory, state operations, state preparations
46L07 Operator spaces and completely bounded maps
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
Full Text: DOI

References:

[1] Kedem, Y.; Vaidman, L., Phys. Rev. Lett., 105, 230401 (2010) · doi:10.1103/physrevlett.105.230401
[2] Ho, L. B.; Imoto, N., Phys. Lett. A, 380, 2129-2135 (2016) · Zbl 1360.81107 · doi:10.1016/j.physleta.2016.05.005
[3] von Neumann, J., Mathematische Grundlage der Quanten Mechanik (1932) · JFM 58.0929.06
[4] Aharonov, Y.; Albert, D. Z.; Vaidman, L., Phys. Rev. Lett., 60, 1351 (1988) · doi:10.1103/physrevlett.60.1351
[5] Hosoya, A.; Shikano, Y., J. Phys. A: Math. Theor., 43, 385307 (2010) · Zbl 1198.81054 · doi:10.1088/1751-8113/43/38/385307
[6] Pusey, M. F., Phys. Rev. Lett., 113, 200401 (2014) · doi:10.1103/physrevlett.113.200401
[7] Aharonov, Y.; Rohrlich, D., Quantum Paradoxes: Quantum Theory for the Perplexed (2005) · Zbl 1081.81001
[8] Hardy, L., Phys. Rev. Lett., 68, 2981 (1992) · Zbl 0969.81500 · doi:10.1103/physrevlett.68.2981
[9] Aharonov, Y.; Botero, A.; Popescu, S.; Rezink, B.; Tollaksen, J., Phys. Lett. A, 301, 130-138 (2002) · Zbl 0997.81011 · doi:10.1016/s0375-9601(02)00986-6
[10] Lundeen, J. S.; Steinberg, A. M., Phys. Rev. Lett., 102, 020404 (2009) · doi:10.1103/physrevlett.102.020404
[11] Yokota, K.; Yamamoto, T.; Koashi, M.; Imoto, N., New J. Phys., 11, 033011 (2009) · doi:10.1088/1367-2630/11/3/033011
[12] Aharonov, Y.; Popescu, S.; Rohrlich, D.; Skrzypczky, P., New J. Phys., 15, 113015 (2013) · Zbl 1451.81018 · doi:10.1088/1367-2630/15/11/113015
[13] Denkmayr, T.; Geppert, H.; Sponar, S.; Lemmel, H.; Matzkin, A.; Tollaksen, J.; Hasegawa, Y., Nat. Commun., 5, 4492 (2014) · doi:10.1038/ncomms5492
[14] Pang, S.; Dressel, J.; Brun, T. A., Phys. Rev. Lett., 113, 030401 (2014) · doi:10.1103/physrevlett.113.030401
[15] Zhang, L.; Datta, A.; Walmsley, I. A., Phys. Rev. Lett., 114, 210801 (2015) · doi:10.1103/PhysRevLett.114.210801
[16] Huang, S.; Agarwal, G. S., New J. Phys., 17, 093032 (2015) · Zbl 1448.81045 · doi:10.1088/1367-2630/17/9/093032
[17] Nishizawa, A., Phys. Rev. A, 92, 032123 (2015) · doi:10.1103/physreva.92.032123
[18] Susa, Y.; Tanaka, S., Phys. Rev. A, 92, 012112 (2015) · doi:10.1103/physreva.92.012112
[19] Cormann, M.; Remy, M.; Kolaric, B.; Caudano, Y., Phys. Rev. A, 93, 042124 (2016) · doi:10.1103/physreva.93.042124
[20] Cormann, M.; Caudano, Y., J. Phys. A: Math. Theor., 50, 305302 (2017) · Zbl 1371.81028 · doi:10.1088/1751-8121/aa7639
[21] Ho, L. B.; Imoto, N., Phys. Rev. A, 95, 032135 (2017) · doi:10.1103/physreva.95.032135
[22] Pancharatnam, S., Proc. Indian Acad. Sci., 44, 247 (1956)
[23] Botero, A., J. Math. Phys., 44, 5279 (2003) · Zbl 1063.81053 · doi:10.1063/1.1612895
[24] Botero, A.
[25] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
[26] Dressel, J.; Jordan, A. N., Phys. Rev. A, 85, 012107 (2012) · doi:10.1103/physreva.85.012107
[27] Sjöqvist, E., Phys. Lett. A, 359, 187 (2006) · Zbl 1236.81020 · doi:10.1016/j.physleta.2006.06.028
[28] Berry, M. V., J. Mod. Opt., 34, 1401 (1987) · Zbl 0941.81542 · doi:10.1080/09500348714551321
[29] Mukunda, N.; Simon, R., Ann. Phys., 228, 205 (1993) · Zbl 0791.58121 · doi:10.1006/aphy.1993.1093
[30] Tamate, S.; Kobayashi, H.; Nakanishi, T.; Sugiyama, K.; Kitano, M., New J. Phys., 11, 093025 (2009) · doi:10.1088/1367-2630/11/9/093025
[31] Berry, M. V., Proc. R. Soc. London, Ser. A, 392, 45 (1984) · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[32] Simon, B., Phys. Rev. Lett., 51, 2167 (1983) · doi:10.1103/physrevlett.51.2167
[33] Solli, D. R.; McCormick, C. F.; Chiao, R. Y., Phys. Rev. Lett., 92, 043601 (2004) · doi:10.1103/physrevlett.92.043601
[34] Aharonov, Y.; Botero, A., Phys. Rev. A, 72, 052111 (2005) · doi:10.1103/physreva.72.052111
[35] Monachello, V.; Flack, R.; Hiley, B. J.; Callaghan, R. E. (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.