×

Trigonometric spline and spectral bounds for the solution of linear time-periodic systems. (English) Zbl 1385.65045

Authors’ abstract: Linear time-periodic systems arise whenever a nonlinear system is linearized about a periodic trajectory. Examples include anisotropic rotor-bearing systems and parametrically excited systems. The structure of the solution to linear time-periodic systems is known due to Floquet’s theorem. We use this information to derive a new norm which yields two-sided bounds on the solution and in this norm vibrations of the solution are suppressed. The obtained results are a generalization for linear time-invariant systems. Since Floquet’s theorem is non-constructive, the applicability of the aforementioned results suffers in general from an unknown Floquet normal form. Hence, we discuss trigonometric splines and spectral methods that are both equipped with rigorous bounds on the solution. The methodology differs systematically for the two methods. While in the first method the solution is approximated by trigonometric splines and the upper bound depends on the approximation quality, in the second method the linear time-periodic system is approximated and its solution is represented as an infinite series. Depending on the smoothness of the time-periodic system, we formulate two upper bounds which incorporate the approximation error of the linear time-periodic system and the truncation error of the series representation. Rigorous bounds on the solution are necessary whenever reliable results are needed, and hence they can support the analysis and, e.g., stability or robustness of the solution may be proven or falsified. The theoretical results are illustrated and compared to trigonometric spline bounds and spectral bounds by means of three examples that include an anisotropic rotor-bearing system and a parametrically excited Cantilever beam.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65D07 Numerical computation using splines
93C05 Linear systems in control theory
65K10 Numerical optimization and variational techniques
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34A30 Linear ordinary differential equations and systems
65L70 Error bounds for numerical methods for ordinary differential equations

References:

[1] Allen, M.S.: Frequency-domain identification of linear time-periodic systems using LTI techniques. J. Comput. Nonlinear Dyn. 4, 041,004.1-041,004.6 (2009) · doi:10.1115/1.3187151
[2] Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10(4), 643-647 (1943). doi:10.1215/S0012-7094-43-01059-2 · Zbl 0061.18502 · doi:10.1215/S0012-7094-43-01059-2
[3] Benner, P., Denißen, J.: Spectral bounds on the solution of linear time-periodic systems. Proc. Appl. Math. Mech. 14(1), 863-864 (2014). doi:10.1002/pamm.201410412 · doi:10.1002/pamm.201410412
[4] Benner, P., Denißen, J., Kohaupt, L.: Bounds on the solution of linear time-periodic systems. Proc. Appl. Math. Mech. 13(1), 447-448 (2013). doi:10.1002/pamm.201310217 · doi:10.1002/pamm.201310217
[5] Chebyshev, P.L.: Théorie des mécanismes connus sous le nom de parallélogrammes. Mémoires des Savants étrangers présentés à l’Académie de Saint-Pétersbourg 7, 539-568 (1854)
[6] Coddington, A., Carlson, R.: Linear Ordinary Differential Equations. SIAM, Philadelphia (1997) · Zbl 0871.34001 · doi:10.1137/1.9781611971439
[7] Dohnal, F., Ecker, H., Springer, H.: Enhanced damping of a Cantilever beam by axial parametric excitation. Arch. Appl. Mech. 78(12), 935-947 (2008). doi:10.1007/s00419-008-0202-0 · Zbl 1161.74393 · doi:10.1007/s00419-008-0202-0
[8] Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Annales Scientifiques de l’École Normale Supérieure 12(2), 47-88 (1883). doi:10.1016/j.ansens.2007.09.002 · JFM 15.0279.01 · doi:10.1016/j.ansens.2007.09.002
[9] Forster, O.: Analysis 1. Vieweg+Teubner Verlag, Berlin (2011). doi:10.1007/978-3-8348-8139-7 · Zbl 1247.26001 · doi:10.1007/978-3-8348-8139-7
[10] Funaro, D.: Polynomial approximation of differential equations. Lecture notes in physics. Springer, Berlin (1992) · Zbl 0774.41010
[11] Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM (1977) · Zbl 0412.65058
[12] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Berlin (2010) · Zbl 1192.65097
[13] Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51(4), 747-764 (2009). doi:10.1137/090768539 · Zbl 1178.65040 · doi:10.1137/090768539
[14] Horst, R., Tuy, H.: Global Optimization. Springer, Berlin (1996). doi:10.1007/978-3-662-03199-5 · Zbl 0867.90105 · doi:10.1007/978-3-662-03199-5
[15] Kohaupt, L.: Differential calculus for some p-norms of the fundamental matrix with applications. J. Comput. Appl. Math. 135(1), 1-22 (2001). doi:10.1016/S0377-0427(00)00559-8 · Zbl 1025.34004 · doi:10.1016/S0377-0427(00)00559-8
[16] Kohaupt, L.: Differential calculus for p-norms of complex-valued vector functions with applications. J. Comput. Appl. Math. 145(2), 425-457 (2002). doi:10.1016/S0377-0427(01)00594-5 · Zbl 1055.65057 · doi:10.1016/S0377-0427(01)00594-5
[17] Kohaupt, L.: Computation of optimal two-sided bounds for the asymptotic behavior of free linear dynamical systems with application of the differential calculus of norms. J. Comput. Math. Optim. 2, 127-173 (2006) · Zbl 1103.65081
[18] Kohaupt, L.: Solution of the matrix eigenvalue problem \[{V}{A}^*+{A}{V}=\mu{V}\] VA∗+AV=μV with applications to the study of free linear dynamical systems. J. Comput. Appl. Math. 213(1), 142-165 (2008). doi:10.1016/j.cam.2007.01.001 · Zbl 1142.65036 · doi:10.1016/j.cam.2007.01.001
[19] Kohaupt, L.: On the vibration-suppression property and monotonicity behavior of a special weighted norm for dynamical systems. Appl. Math. Comput. 222, 307-330 (2013). doi:10.1016/j.amc.2013.06.091 · Zbl 1333.34020 · doi:10.1016/j.amc.2013.06.091
[20] Loscalzo, F.R., Talbot, T.D.: Spline function approximations for solutions of ordinary differential equations. Bull. Am. Math. Soc. 73, 438-442 (1967). doi:10.1090/S0002-9904-1967-11778-6 · Zbl 0171.36302 · doi:10.1090/S0002-9904-1967-11778-6
[21] Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3-49 (2003) · Zbl 1030.65029 · doi:10.1137/S00361445024180
[22] Müller, P.C., Schiehlen, W.: Lineare Schwingungen. Akademische Verlagsgesellschaft Wiesbaden, Wiesbaden (1976) · Zbl 0421.70001
[23] Nikolis, A.: Trigonometrische splines und ihre anwendung zur numerischen behandlung von integralgleichungen. Ph.D. thesis, Ludwig-Maximilians-Universität München (1993) · Zbl 0928.65177
[24] Nikolis, A.: Numerical solutions of ordinary differential equations with quadratic trigonometric splines. Appl. Math. E-Notes 4, 142-149 (2004) · Zbl 1068.65094
[25] Nikolis, A., Seimenis, I.: Solving dynamical systems with cubic trigonometric splines. Appl. Math. E-Notes 5, 116-123 (2005) · Zbl 1071.65174
[26] Orszag, S.A.: Numerical methods for the simulation of turbulence. Phys. Fluids 12(Supp. II), 250-257 (1969) · Zbl 0217.25803
[27] Schoenberg, I.: On trigonometric spline interpolation. Indiana Univ. Math. J. 13, 795-825 (1964) · Zbl 0147.32104 · doi:10.1512/iumj.1964.13.13047
[28] Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, Hoboken (1981) · Zbl 0449.41004
[29] Sinha, S.C., Chou, C.C., Denman, H.H.: Stability analysis of systems with periodic coefficients: an approximate approach. J. Sound Vib. 64, 515-527 (1979). doi:10.1016/0022-460X(79)90801-0 · Zbl 0448.73036 · doi:10.1016/0022-460X(79)90801-0
[30] Sinha, S.C., Wu, D.H.: An efficient computational scheme for the analysis of periodic systems. J. Sound Vib. 151, 91-117 (1991). doi:10.1016/0022-460X(91)90654-3 · doi:10.1016/0022-460X(91)90654-3
[31] Sinha, S., Butcher, E.: Solution and stability of a set of p-th order linear differential equations with periodic coefficients via Chebyshev polynomials. Math. Probl. Eng. 2, 165-190 (1996). doi:10.1155/S1024123X96000294 · Zbl 0920.93027 · doi:10.1155/S1024123X96000294
[32] Söderlind, G., Mattheij, R.M.M.: Stability and asymptotic estimates in nonautonomous linear differential systems. SIAM J. Math. Anal. 16(1), 69-92 (1985). doi:10.1137/0516005 · Zbl 0559.34051 · doi:10.1137/0516005
[33] Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235-286 (2001). doi:10.1137/S0036144500381988 · Zbl 0985.65028 · doi:10.1137/S0036144500381988
[34] Trefethen, L.N.: Spectral Methods in MatLab. SIAM, Philadelphia (2000) · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[35] Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67-87 (2008). doi:10.1137/060659831 · Zbl 1141.65018 · doi:10.1137/060659831
[36] Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013) · Zbl 1264.41001
[37] Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Mart, R.: Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J. Comput. 19(3), 328-340 (2007). doi:10.1287/ijoc.1060.0175 · Zbl 1241.90093 · doi:10.1287/ijoc.1060.0175
[38] Walter, W.: Differential- und Integral-Ungleichungen. Springer Tracts in Natural Philosophy, vol. 2. Springer, Berlin (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.