×

Symmetric Liapunov center theorem for minimal orbit. (English) Zbl 1385.37069

Summary: Using the techniques of equivariant bifurcation theory we prove the existence of non-stationary periodic solutions of \(\Gamma\)-symmetric systems \(\ddot{q}(t) = - \nabla U(q(t))\) in any neighborhood of an isolated orbit of minima \(\Gamma(q_0)\) of the potential \(U\). We show the strength of our result by proving the existence of new families of periodic orbits in the Lennard-Jones two- and three-body problems and in the Schwarzschild three-body problem.

MSC:

37G40 Dynamical aspects of symmetries, equivariant bifurcation theory
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
70F07 Three-body problems

References:

[1] Adams, J., Lectures on Lie Groups (1969), W.A. Benjamin: W.A. Benjamin New York-Amsterdam · Zbl 0206.31604
[2] Amann, H., A note on degree theory for gradient mappings, Proc. Amer. Math. Soc., 85, 4, 591-595 (1982) · Zbl 0501.58012
[3] Arredondo, J. A.; Pérez-Chavela, E.; Stoica, C., Dynamics in the Schwarzschild isosceles three body problem, J. Nonlinear Sci., 24, 6, 997-1032 (2014) · Zbl 1305.70019
[4] Bartsch, T., Topological Methods for Variational Methods with Symmetries, Lecture Notes in Math., vol. 1560 (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0789.58001
[5] Berger, M. S., Bifurcation theory and the type numbers of Marston Morse, Proc. Natl. Acad. Sci. USA, 69, 1737-1738 (1972) · Zbl 0237.58013
[6] Berger, M. S., Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis, Pure Appl. Math. (1977), Academic Press: Academic Press New York-London · Zbl 0368.47001
[7] Corbera, M.; Llibre, J.; Pérez-Chavela, E., Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems, Celestial Mech. Dynam. Astronom., 89, 3, 235-266 (2004) · Zbl 1151.70310
[8] Dancer, E. N., Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Angew. Math., 350, 1-22 (1984) · Zbl 0525.58012
[9] Dancer, E. N.; Gȩba, K.; Rybicki, S., Classification of homotopy classes of equivariant gradient maps, Fund. Math., 185, 1, 1-18 (2005) · Zbl 1086.47031
[10] Dancer, E. N.; Rybicki, S., A note on periodic solutions of autonomous Hamiltonian systems emanating from degenerate stationary solutions, Differential Integral Equations, 12, 2, 147-160 (1999) · Zbl 1015.34032
[11] Floer, A., A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems, 7, 1, 93-103 (1987) · Zbl 0633.58040
[12] Fura, J.; Ratajczak, A.; Rybicki, S., Existence and continuation of periodic solutions of autonomous Newtonian systems, J. Differential Equations, 218, 1, 216-252 (2005) · Zbl 1101.34028
[13] Gęba, K., Degree for gradient equivariant maps and equivariant Conley index, (Matzeu, M.; Vignoli, A., Topological Nonlinear Analysis II: Degree, Singularity and Variations. Topological Nonlinear Analysis II: Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 27 (1997), Birkhäuser: Birkhäuser Boston), 247-272 · Zbl 0880.57015
[14] Gęba, K.; Izydorek, M.; Pruszko, A., The Conley index in Hilbert spaces and its applications, Studia Math., 134, 3, 217-233 (1999) · Zbl 0927.58004
[15] Gołębiewska, A.; Rybicki, S., Global bifurcations of critical orbits of G-invariant strongly indefinite functionals, Nonlinear Anal., 74, 5, 1823-1834 (2011) · Zbl 1229.47083
[16] Gołębiewska, A.; Rybicki, S., Equivariant Conley index versus degree for equivariant gradient maps, Discrete Contin. Dyn. Syst., 6, 4, 985-997 (2013) · Zbl 1353.37103
[17] Henrard, J., Lyapunov’s center theorem for resonant equilibrium, J. Differential Equations, 14, 431-441 (1973) · Zbl 0263.34031
[18] Izydorek, M., Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonlinear Anal., 51, 1, 33-66 (2002) · Zbl 1035.37009
[19] Kawakubo, K., The Theory of Transformation Groups (1991), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York · Zbl 0744.57001
[20] López Garza, G.; Rybicki, S., Equivariant bifurcation index, Nonlinear Anal., 73, 9, 2779-2791 (2010) · Zbl 1207.37040
[21] Marzantowicz, W.; Parusiński, A., Periodic solutions near an equilibrium of a differential equation with a first integral, Rend. Semin. Mat. Univ. Padova, 77, 193-206 (1987) · Zbl 0651.34040
[22] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci., vol. 74 (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0676.58017
[23] McCord, C. K., On the Hopf index and the Conley index, Trans. Amer. Math. Soc., 313, 2, 853-860 (1989) · Zbl 0712.34062
[24] Mioc, V.; Pérez-Chavela, E.; Stavinschi, M., The anisotropic Schwarzschild-type problem, main features, Celestial Mech. Dynam. Astronom., 86, 1, 81-106 (2003) · Zbl 1062.70012
[25] Moser, J., Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math., 29, 6, 724-747 (1976) · Zbl 0346.34024
[26] Pérez-Chavela, E.; Rybicki, S.; Strzelecki, D., Symmetric Liapunov center theorem, Calc. Var. Partial Differential Equations, 56, 2, 26 (2017) · Zbl 1378.37095
[27] Rabinowitz, P. H., A note on topological degree for potential operators, J. Math. Anal. Appl., 51, 2, 483-492 (1975) · Zbl 0307.47058
[28] Rybakowski, K. P., On the homotopy index for infinite dimensional semiflows, Trans. Amer. Math. Soc., 269, 2, 351-382 (1982) · Zbl 0468.58016
[29] Schmidt, D. S., Hopf’s bifurcation theorem and the center theorem of Liapunov with resonance cases, J. Math. Anal. Appl., 63, 2, 354-370 (1978) · Zbl 0383.34026
[30] Schwarzschild, K., On the gravitational field of a point-mass, according to Einstein’s theory, Abraham Zelmanov J., 1, 10-19 (2008) · Zbl 1210.83011
[31] Smoller, J.; Wasserman, A., Bifurcation and symmetry-breaking, Invent. Math., 100, 1, 63-95 (1990) · Zbl 0721.58011
[32] Srzednicki, R., On rest points of dynamical systems, Fund. Math., 126, 69-81 (1985) · Zbl 0589.54049
[33] Stoica, C.; Mioc, V., The Schwarzschild problem in astrophysics, Astrophys. Space Sci., 249, 161-173 (1997) · Zbl 0895.70008
[34] Szulkin, A., Bifurcations for strongly indefinite functionals and a Liapunov type theorem for Hamiltonian systems, Differential Integral Equations, 7, 1, 217-234 (1994) · Zbl 0841.34045
[35] tom Dieck, T., Transformation Groups, de Gruyter Stud. Math., vol. 8 (1987), Walter de Gruyter and Co.: Walter de Gruyter and Co. Berlin · Zbl 0611.57002
[36] Wales, D. J.; Doyle, J. P.K., Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A, 101, 28, 5111-5116 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.