×

Siegel fields. (Corps de Siegel.) (French. English summary) Zbl 1385.11046

Let \(H(x,y,z)\) be one of the norms \(\max\{|x|,|y|,|z|\}\) or \(\sqrt{x^2+y^2+z^2}\) on \({\mathbb{R}}^3\). The authors define a Siegel field as a subfield \(K\) of the field \(\overline{\mathbb{Q}}\) of algebraic numbers which satisfies the following property: there exists a constant \(c(2,K)\) such that, for any \((a,b,c)\in K^3\setminus\{(0,0,0)\}\), there exists \((x,y,z)\in K^3\setminus\{(0,0,0)\}\) with \(ax+by+cz=0\) and \(H(x,y,z)\leq c(2,K) H(a,b,c)^{1/2}\). It is equivalent to select one of the two norms, as long as one does not specify the value of \(c(2,K)\). The classical Siegel lemma, which is usually proved by means of Dirichlet’s pigeonhole principle, shows that the field of rational numbers is a Siegel field. This is also a consequence of Minkowski’s first theorem in the geometry of numbers, as was already known by K. Mahler. More generally, any number field is a Siegel field. According to D. Roy and J. L. Thunder [J. Reine Angew. Math. 476, 1–26 (1996; Zbl 0860.11036)] and to S. Zhang [J. Am. Math. Soc. 8, No. 1, 187–221 (1995; Zbl 0861.14018)] the field \(\overline{\mathbb{Q}}\) of algebraic numbers is a Siegel field. One of the goals of the paper under review is to produce further examples and also to give some counterexamples of this property. The definition above involves only homogeneous linear forms in three variables, but this is sufficient for the validity of general versions of Siegel’s lemma.
The authors work on adelic spaces, namely finite dimensional \(K\)-vector spaces with a norm at each place of \(K\). They restrict to what they call the rigid ones, where the norms are defined by an adelic matrix. To such a rigid adelic space \(E\) are attached notions of heights of points \(H_E:E\to {\mathbb{R}}\) and height \(H(E)\) of \(E\). They prove that for any \(n\geq 1\), there exists a constant \(c(n,K)\) such that if \(E\) is a rigid analytic space over \(K\) of dimension \(n\), then there exists a basis \((e_1,\dots,e_n)\) of \(E\) with \[ H_E(e_1)\cdots H_E(e_n)\leq c(n,K) H(E). \] Their study involves the successive minima related to the height, which they denote by \(\Lambda_i(E)\). They introduce also the minima \(\lambda_i^{\mathrm{BV}}(E)\) of Bombieri-Vaaler, the minima \(\lambda_i(E)\) of Thunder, the minima \(Z_i(E)\) of Zhang and the mixed ones like \(\zeta_i^{\mathrm{BV}}(E)\) (Zhang, Bombieri-Vaaler). They compare these minima. They define a Zhang field as a subfield \(K\) of \(\overline{\mathbb{Q}}\) for which \(Z_1(E)\cdots Z_n(E) H(E)^{-1}\) is bounded above by a constant depending only on the dimension \(n\) of \(E\). For \(\overline{\mathbb{Q}}\) such an upper bound is \(\exp(n(H_n-1)/2)\) where \(H_n=1+(1/2)+\cdots+(1/n)\), as shown by Zhang: hence \(\overline{\mathbb{Q}}\) is a Zhang field. The first theorem of this paper is that a Siegel field which is not a number field is a Zhang field. The authors deduce that a field which satisfies the Northcott property as defined in [E. Bombieri and U. Zannier, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 12, No. 1, 5–14 (2001; Zbl 1072.11077)] and is not a number field is not a Siegel field. The authors show that the constant in Zhang’s Theorem above is sharp, even when one restricts to the first minimum : for any \(\epsilon>0\) and any \(n\geq 1\), there exists a rigid analytic space \(E\) over \(\overline{\mathbb{Q}}\) of dimension \(n\) such that \(\Lambda_1(E)H(E)^{-1/n}\geq \exp((H_n-1)/2)-\epsilon\). They give a number of examples and propose several open problems.

MSC:

11H06 Lattices and convex bodies (number-theoretic aspects)
52C07 Lattices and convex bodies in \(n\) dimensions (aspects of discrete geometry)
11G50 Heights
11R56 Adèle rings and groups
Full Text: DOI

References:

[1] Allcock D. and Vaaler J., A Banach space determined by the Weil height, Acta Arith. 136 (2009), 279-298.; Allcock, D.; Vaaler, J., A Banach space determined by the Weil height, Acta Arith., 136, 279-298 (2009) · Zbl 1228.11101
[2] Amoroso F. and Dvornicich R., A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), 260-272.; Amoroso, F.; Dvornicich, R., A lower bound for the height in abelian extensions, J. Number Theory, 80, 260-272 (2000) · Zbl 0973.11092
[3] Ankeny N., Brauer R. and Chowla S., A note on the class-numbers of algebraic number fields, Amer. J. Math. 78 (1956), 51-61.; Ankeny, N.; Brauer, R.; Chowla, S., A note on the class-numbers of algebraic number fields, Amer. J. Math., 78, 51-61 (1956) · Zbl 0074.26502
[4] Ash R., Probability and measure theory, 2nd ed., Harcourt Academic Press, Burlington 2000.; Ash, R., Probability and measure theory (2000) · Zbl 0944.60004
[5] Bombieri E. and Vaaler J., On Siegel’s lemma, Invent. Math. 73 (1983), 11-32; Addendum, ibid. 75 (1984), 377.; Bombieri, E.; Vaaler, J., On Siegel’s lemma, Invent. Math., 73, 11-32 (1983) · Zbl 0533.10030
[6] Bombieri E. and Zannier U., A note on heights in certain infinite extensions of \({\mathbb{Q}} \), Rend. Mat. Acc. Lincei 12 (2001), 5-14.; Bombieri, E.; Zannier, U., A note on heights in certain infinite extensions of \({\mathbb{Q}} \), Rend. Mat. Acc. Lincei, 12, 5-14 (2001) · Zbl 1072.11077
[7] Cassels J. W. S. and Fröhlich A., Algebraic number theory, Academic Press, London 1967.; Cassels, J. W. S.; Fröhlich, A., Algebraic number theory (1967) · Zbl 0153.07403
[8] David S. and Philippon P., Minorations des hauteurs normalisées des sous-variétés des tores, Ann. Scuola Norm. Sup. Pisa IV 28 (1999), 489-543; Erratum, ibid. 29 (2000), 729-731.; David, S.; Philippon, P., Minorations des hauteurs normalisées des sous-variétés des tores, Ann. Scuola Norm. Sup. Pisa IV, 28, 489-543 (1999) · Zbl 1002.11055
[9] Gaudron É., Pentes des fibrés vectoriels adéliques sur un corps global, Rend. Semin. Mat. Univ. Padova 119 (2008), 21-95.; Gaudron, É., Pentes des fibrés vectoriels adéliques sur un corps global, Rend. Semin. Mat. Univ. Padova, 119, 21-95 (2008) · Zbl 1206.14047
[10] Gaudron É., Géométrie des nombres adélique et lemmes de Siegel généralisés, Manuscripta Math. 130 (2009), 159-182.; Gaudron, É., Géométrie des nombres adélique et lemmes de Siegel généralisés, Manuscripta Math., 130, 159-182 (2009) · Zbl 1231.11076
[11] Gaudron É. and Rémond G., Minima, pentes et algèbre tensorielle, Israel J. Math. 195 (2013), 565-591.; Gaudron, É.; Rémond, G., Minima, pentes et algèbre tensorielle, Israel J. Math., 195, 565-591 (2013) · Zbl 1295.11126
[12] Gramain A., Intégration, Collection méthodes, Hermann, Paris 1988.; Gramain, A., Intégration, Collection méthodes (1988) · Zbl 0731.28001
[13] Hasse H., Number theory, Classics Math., Springer, Berlin 2002.; Hasse, H., Number theory (2002) · Zbl 0991.11001
[14] Jacobson N., Basic algebra II, 2nd ed., Freeman, New York 1989.; Jacobson, N., Basic algebra II (1989) · Zbl 0694.16001
[15] Louboutin S., Explicit bounds for residues of Dedekind zeta functions, values of L-functions at \(s=1\), and relative class numbers, J. Number Theory 85 (2000), 263-282.; Louboutin, S., Explicit bounds for residues of Dedekind zeta functions, values of L-functions at \(s=1\), and relative class numbers, J. Number Theory, 85, 263-282 (2000) · Zbl 0967.11049
[16] Masser D., A note on Siegel’s lemma, Rocky Mountain J. Math. 26 (1996), 1057-1068.; Masser, D., A note on Siegel’s lemma, Rocky Mountain J. Math., 26, 1057-1068 (1996) · Zbl 0905.11030
[17] McFeat R., Geometry of numbers in adele spaces, Dissertationes Math. Rozprawy Mat. 88 (1971).; McFeat, R., Geometry of numbers in adele spaces, Dissertationes Math. Rozprawy Mat., 88 (1971) · Zbl 0229.10014
[18] Minkowski H., Geometrie der Zahlen, Teubner, Leipzig 1910.; Minkowski, H., Geometrie der Zahlen (1910) · JFM 41.0239.03
[19] Neukirch J., Algebraic number theory, Grundlehren Math. Wiss. 322, Springer, Heidelberg 1999.; Neukirch, J., Algebraic number theory (1999) · Zbl 0956.11021
[20] Perez-Garcia C. and Schikhof W., Locally convex spaces over non-Archimedean valued fields, Cambridge Stud. Adv. Math. 119, Cambridge University Press, Cambridge 2010.; Perez-Garcia, C.; Schikhof, W., Locally convex spaces over non-Archimedean valued fields (2010) · Zbl 1193.46001
[21] Ribenboim P., The theory of classical valuations, Springer Monogr. Math., Springer, New York 1999.; Ribenboim, P., The theory of classical valuations (1999) · Zbl 0957.12005
[22] Roy D. and Thunder J., An absolute Siegel’s lemma, J. reine angew. Math. 476 (1996), 1-26; Addendum and erratum, ibid. 508 (1999), 47-51.; Roy, D.; Thunder, J., An absolute Siegel’s lemma, J. reine angew. Math., 476, 1-26 (1996) · Zbl 0860.11036
[23] Rumely R., The Fekete-Szegő theorem with splitting conditions. II, Acta Arith. 103 (2002), 347-410.; Rumely, R., The Fekete-Szegő theorem with splitting conditions. II, Acta Arith., 103, 347-410 (2002) · Zbl 1126.11342
[24] Thue A., Om en generel i store hele tal uløsbar ligning, Christiania Vidensk. Selsk. Skr. 7 (1908), 1-15.; Thue, A., Om en generel i store hele tal uløsbar ligning, Christiania Vidensk. Selsk. Skr., 7, 1-15 (1908) · JFM 40.0256.01
[25] Thue A., Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math. 135 (1909), 284-305.; Thue, A., Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math., 135, 284-305 (1909) · JFM 40.0265.01
[26] Thunder J., An adelic Minkowski-Hlawka theorem and an application to Siegel’s lemma, J. reine angew. Math. 475 (1996), 167-185.; Thunder, J., An adelic Minkowski-Hlawka theorem and an application to Siegel’s lemma, J. reine angew. Math., 475, 167-185 (1996) · Zbl 0858.11034
[27] Thunder J., Remarks on adelic geometry of numbers, Number theory for the millennium. III, A. K. Peters, Natick (2002), 253-259.; Thunder, J., Remarks on adelic geometry of numbers, Number theory for the millennium. III, 253-259 (2002) · Zbl 1042.11044
[28] Vaaler J., A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), 543-553.; Vaaler, J., A geometric inequality with applications to linear forms, Pacific J. Math., 83, 543-553 (1979) · Zbl 0465.52011
[29] Vaaler J., The best constant in Siegel’s lemma, Monatsh. Math. 140 (2003), 71-89.; Vaaler, J., The best constant in Siegel’s lemma, Monatsh. Math., 140, 71-89 (2003) · Zbl 1034.11038
[30] Weil A., Adèles and algebraic groups, Progr. Math. 23, Birkhäuser, Boston 1982.; Weil, A., Adèles and algebraic groups (1982) · Zbl 0493.14028
[31] Weil A., Basic number theory, Classics Math., Springer, Berlin 1995.; Weil, A., Basic number theory (1995) · Zbl 0823.11001
[32] Widmer M., On certain infinite extensions of the rationals with Northcott property, Monatsh. Math. 162 (2011), 341-353.; Widmer, M., On certain infinite extensions of the rationals with Northcott property, Monatsh. Math., 162, 341-353 (2011) · Zbl 1220.11133
[33] Zhang S., Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), 187-221.; Zhang, S., Positive line bundles on arithmetic varieties, J. Amer. Math. Soc., 8, 187-221 (1995) · Zbl 0861.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.