×

Design of imaginary spectrum of LTI systems with delays to manipulate stability regions. (English) Zbl 1384.93051

Insperger, Tamás (ed.) et al., Time delay systems. Theory, numerics, applications, and experiments. Selected papers based on the presentations at the 12th IFAC workshop, Ann Arbor, MI, USA, June 28–30, 2015. Cham: Springer (ISBN 978-3-319-53425-1/hbk; 978-3-319-53426-8/ebook). Advances in Delays and Dynamics 7, 127-140 (2017).
Summary: This chapter is on the design problem of Linear Time-Invariant (LTI) Systems with delays. Our recent studies on the use of algebraic techniques, namely resultant and iterated discriminants operations, in connection with the well-known Rekasius transformation implemented on the system characteristic equation already revealed that it is indeed possible to compute the exact range of the imaginary spectrum of such systems. This know-how, which is the key toward understanding the stabilty/instability decomposition of the system, is utilized here to craft the imaginary spectrum of LTI systems with multiple delays, specifically with the aim to manipulate stability regions in a systematic manner in the delay parameter space.
For the entire collection see [Zbl 1380.34003].

MSC:

93B60 Eigenvalue problems
93C05 Linear systems in control theory
34K06 Linear functional-differential equations
34K20 Stability theory of functional-differential equations
93B17 Transformations
93D99 Stability of control systems
Full Text: DOI

References:

[1] Abdallah, C.T., Dorato, P., Benites-Read, J., Byrne, R.: Delayed positive feedback can stabilize oscillatory systems. Proc. Am. Control Conf. (1993)
[2] Chen, J., Latchman, H.A.: Frequency sweeping tests for asymptotic stability independent of delay. IEEE Trans. Autom. Control 40(9), 1640-1645 (1995) · Zbl 0834.93044 · doi:10.1109/9.412637
[3] Collins, G.E.: The calculation of multivariate polynomial resultants. J. Assoc. Comput. Mach. 18(4), 515-532 (1971) · Zbl 0226.65042 · doi:10.1145/321662.321666
[4] Datko, R.: A Procedure for determination of the exponential stability of certain differential-difference equations. Q. Appl. Math. 36, 279-292 (1978) · Zbl 0405.34051 · doi:10.1090/qam/508772
[5] Delice, I.I.: Stability analysis of multiple time-delay systems with applications to supply chain management. Ph.D. Dissertation, Northeastern University, Boston, MA (2011)
[6] Delice, I.I., Sipahi, R.: Exact upper and lower bounds of crossing frequency set and delay independent stability test for multiple time delayed systems. In: 8th IFAC Workshop on Time-Delay Systems, Sinaia, Romania (2009)
[7] Delice, I.I., Sipahi, R.: Delay-independent stability test for systems with multiple time-delays. IEEE Trans. Autom. Control 57(4), 963-972 (2012) · Zbl 1369.93438
[8] Gu, K., Naghnaeian, M.: On stability crossing set for general systems with three delays—part 1 and part 2. In: IFAC Workshop on Time Delay Systems, Sinaia, Romania (2009)
[9] Gu, K., Naghnaeian, M.: Stability crossing set for systems with three delays. IEEE Trans. Autom. Control 56(1), 11-26 (2011) · Zbl 1368.34076
[10] Gu, K., Niculescu, S.-I., Chen, J.: On Stability of crossing curves for general systems with two delays. J. Math. Anal. Appl. 311, 231-253 (2005) · Zbl 1087.34052 · doi:10.1016/j.jmaa.2005.02.034
[11] Lee, M.S., Hsu, C.S.: On the \(\tau \)-decomposition method of stability analysis for retarded dynamical systems. SIAM J. Control 7, 242-259 (1969) · Zbl 0182.12701 · doi:10.1137/0307017
[12] Michiels, W., Niculescu, S.-I.: Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM (2007) · Zbl 1140.93026
[13] Michiels, W., Niculescu, S.-I.: Characterization of delay-independent stability and delay-interference phenomena. SIAM J. Control Optim. 45, 2138-2155 (2007) · Zbl 1134.34050 · doi:10.1137/050641223
[14] Naghnaeian, M., Gu, K.: Stability crossing set for systems with two scalar-delay channels. Automatica 49(7), 2098-2106 (2013) · Zbl 1364.93739 · doi:10.1016/j.automatica.2013.04.025
[15] Neimark, J.: \(D\)-subdivisions and spaces of quasi-polynomials. Prikl. Mat. Meh. 13, 349-380 (1949) · Zbl 0039.30304
[16] Nia, P.M., Sipahi, R.: Controller design for delay-independent stability of linear time-invariant vibration systems with multiple delays. J. Sound Vib. 332(14), 3589-3604 (2013) · doi:10.1016/j.jsv.2013.01.016
[17] Nia, P.M.: Control-parameter-space classification for delay-independent-stability of linear time-invariant time-delay systems; theory and experiments. Ph.D. Dissertation, Northeastern University, Boston, MA (2014)
[18] Niculescu, S.-I.: Delay Effects on Stability: A Robust Control Approach. Springer, Heidelberg (2001) · Zbl 0997.93001
[19] Niculescu, S.-I., Michiels, W.: Stabilizing a chain of integrators using multiple delays. IEEE Trans. Autom. Control 49(5), 802-807 (2004) · Zbl 1365.93412
[20] Olgac, N., Sipahi, R.: An exact method for the stability analysis of time-delayed LTI systems. IEEE Trans. Autom. Control 47, 793-797 (2002) · Zbl 1364.93576 · doi:10.1109/TAC.2002.1000275
[21] Olgac, N., Sipahi, R., Ergenc, A.F.: Delay scheduling, an unconventional use of time delay for trajectory tracking. Mechatronics 17, 199-206 (2007) · doi:10.1016/j.mechatronics.2007.02.001
[22] Popov, E.P.: The Dynamics of Automatic Control Systems. Pergamon Press, London (1962) · Zbl 0121.31602
[23] Rekasius, Z.V.: A stability test for systems with delays. In: Proceedings of 1980 Joint Automatic Control Conference, San Francisco, CA, article no. TP9-A (1980) · Zbl 0429.93017
[24] Sipahi, R.: Cluster Treatment of Characteristic Roots, CTCR, a unique methodology for the complete stability robustness analysis of linear time invariant multiple time delay systems against delay uncertainties. Ph.D. Dissertation, University of Connecticut, Storrs, CT (2005)
[25] Sipahi, R., Delice, I.I.: Extraction of 3D stability switching hypersurfaces of a time delay system with multiple fixed delays. Automatica 45, 1449-1454 (2009) · Zbl 1166.93317 · doi:10.1016/j.automatica.2009.01.017
[26] Sipahi, R., Delice, I.I.: Advanced clustering with frequency sweeping methodology for the stability analysis of multiple time-delay systems. IEEE Trans. Autom. Control 56(2), 467-472 (2011) · Zbl 1368.93610
[27] Sipahi, R., Delice, I.I.: On some features of core hypersurfaces related to stability switching of LTI systems with multiple delays. IMA J. Math. Control Inf. 31(2), 257-272 (2013) · Zbl 1293.93640
[28] Sipahi, R., Olgac, N.: Stability analysis of multiple time delayed systems using the direct method. In: ASME-IMECE Conference, Washington DC (2003) · Zbl 1364.93576
[29] Sipahi, R., Olgac, N.: Complete stability map of third order LTI multiple time delay systems. Automatica 41, 1413-1422 (2005) · Zbl 1086.93049 · doi:10.1016/j.automatica.2005.03.022
[30] Sipahi, R., Olgac, N.: Stability robustness of retarded LTI systems with single delay and exhaustive determination of their imaginary spectra. SIAM J. Control Optim. 45, 1680-1696 (2006) · Zbl 1125.93054 · doi:10.1137/050633238
[31] Sipahi, R., Niculescu, S.-I., Abdallah, C.T., Michiels, W., Gu, K.: Stability and stabilization of systems with time delay, limitations and opportunities. IEEE Control Syst. Mag. 31(1), 38-65 (2011) · Zbl 1395.93271 · doi:10.1109/MCS.2010.939135
[32] Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Function. Longman Scientific, UK (1989) · Zbl 0686.34044
[33] Uspensky, J.V.: Theory of Equations. McGraw Hill, US (1948)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.