×

Interpolatory methods for \(\mathcal{H}_{\infty}\) model reduction of multi-input/multi-output systems. (English) Zbl 1384.93015

Benner, Peter (ed.) et al., Model reduction of parametrized systems. Selected contributions based on the presentations at the MoRePaS conference, SISSA, Trieste, Italy, October 13–16, 2015. Cham: Springer (ISBN 978-3-319-58785-1/hbk; 978-3-319-58786-8/ebook). MS&A. Modeling, Simulation and Applications 17, 349-365 (2017).
Summary: We develop here a computationally effective approach for producing high-quality \(\mathcal{H}_{\infty}\)-approximations to large scale linear dynamical systems having Multiple-Inputs Multiple-Outputs (MIMO). We extend an approach for \(\mathcal{H}_{\infty}\) model reduction introduced by G. Flagg et al. [Syst. Control Lett. 62, No. 7, 567–574 (2013; Zbl 1277.93020)] for the Single-Input Single-Output (SISO) setting, which combined ideas originating in interpolatory \(\mathcal{H}_2\)-optimal model reduction with complex Chebyshev approximation. Retaining this framework, our approach to the MIMO problem has its principal computational cost dominated by (sparse) linear solvers, and so it can remain an effective strategy in many large-scale settings. We are able to avoid computationally demanding \(\mathcal{H}_{\infty}\) norm calculations that are normally required to monitor progress within each optimization cycle through the use of “data-driven” rational approximations that are built upon previously computed function samples. Numerical examples are included that illustrate our approach. We produce high fidelity reduced models having consistently better \(\mathcal{H}_{\infty}\) performance than models produced via balanced truncation; these models often are as good as (and occasionally better than) models produced using optimal Hankel norm approximation as well. In all cases considered, the method described here produces reduced models at far lower cost than is possible with either balanced truncation or optimal Hankel norm approximation.
For the entire collection see [Zbl 1381.65001].

MSC:

93A15 Large-scale systems
93B11 System structure simplification
93B36 \(H^\infty\)-control
93C35 Multivariable systems, multidimensional control systems
93C05 Linear systems in control theory
65D05 Numerical interpolation

Citations:

Zbl 1277.93020

Software:

sssMOR

References:

[1] 1.Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA (2005) · Zbl 1112.93002 · doi:10.1137/1.9780898718713
[2] 2.Gallivan, K.A., Vandendorpe, A., Van Dooren, P.: On the generality of multipoint padé approximations. In: 15th IFAC World Congress on Automatic Control (2002)
[3] 3.Beattie, C.A., Gugercin, S.: Model reduction by rational interpolation. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia (2017) · Zbl 1353.93019
[4] 4.Grimme, E.J.: Krylov Projection Methods for Model Reduction. Ph.D. thesis, Department of Electrical Engineering, University of Illinois at Urbana Champaign, 1997
[5] 5.Gallivan, K.A., Vandendorpe, A., Van Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM J. Matrix Anal. Appl. 26(2), 328-349 (2004) · Zbl 1078.41016 · doi:10.1137/S0895479803423925
[6] 6.Gallivan, K.A., Vandendorpe, A., Van Dooren, P.: Sylvester equations and projection-based model reduction. J. Comput. Appl. Math. 162(1), 213-229 (2004) · Zbl 1044.65054 · doi:10.1016/j.cam.2003.08.026
[7] 7.Gugercin, S., Antoulas, A.C., Beattie, C.A.:
[8] 8.Antoulas, A.C., Astolfi, A.:
[9] 9.Helmersson, A.: Model reduction using LMIs. In: Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 4, pp. 3217-3222. Lake Buena Vista, IEEE (1994). doi: · doi:10.1109/CDC.1994.411635
[10] 10.Varga, A., Parrilo, P.: Fast algorithms for solving
[11] 11.Kavranoglu, D., Bettayeb, M.: Characterization of the solution to the optimal · Zbl 0782.93021 · doi:10.1016/0167-6911(93)90021-W
[12] 12.Glover, K.: All optimal hankel-norm approximations of linear multivariable systems and their linf-error bounds. Int. J. Control 39(6), 1115-1193 (1984) · Zbl 0543.93036 · doi:10.1080/00207178408933239
[13] 13.L.N. Trefethen, Rational Chebyshev approximation on the unit disk. Numer. Math. 37(2), 297-320 (1981) · Zbl 0443.30046 · doi:10.1007/BF01398258
[14] 14.Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748-766 (2004) · Zbl 1061.93022 · doi:10.1080/00207170410001713448
[15] 15.Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G.: Computing optimal Hankel norm approximations of large-scale systems. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 3, pp. 3078-3083. IEEE, Piscataway, NJ (2004) · Zbl 0978.93013
[16] 16.Li, J.-R.: Model reduction of large linear systems via low rank system gramians, Ph.D. thesis, Massachusetts Institute of Technology, 2000
[17] 17.Benner, P., Kürschner, P., Saak, J.: Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Electron. Trans. Numer. Anal. 43, 142-162 (2014) · Zbl 1312.65068
[18] 18.Kürschner, P.: Efficient low-rank solution of large-scale matrix equations, Ph.D. thesis, Otto-von-Guericke Universität Magdeburg (2016)
[19] 19.Sabino, J.: Solution of large-scale Lyapunov equations via the block modified Smith method. Ph.D. thesis, Citeseer (2006)
[20] 20.Gugercin, S., Sorensen, D.C., Antoulas, A.C.: A modified low-rank smith method for large-scale Lyapunov equations. Numerical Algoritm. 32(1), 27-55 (2003) · Zbl 1034.93020 · doi:10.1023/A:1022205420182
[21] 21.Flagg, G.M., Beattie, C.A., Gugercin, S.: Interpolatory · Zbl 1277.93020 · doi:10.1016/j.sysconle.2013.03.006
[22] 22.Gustavsen, B., Semlyen, A.: Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Delivery 14(3), 1052-1061 (1999) · doi:10.1109/61.772353
[23] 23.Drmač, Z., Gugercin, S., Beattie, C.: Vector fitting for matrix-valued rational approximation. SIAM J. Sci. Comput. 37(5), A2346-A2379 (2015) · Zbl 1323.93050 · doi:10.1137/15M1010774
[24] 24.Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems. Working Note 2002-2, 2002 · Zbl 1100.93006
[25] 25.Mayo, A.J., Antoulas, A.C.: A framework for the solution of the generalized realization problem. Linear Algebra Appl. 425(2-3), 634-662 (2007) · Zbl 1118.93029
[26] 26.Beattie, C.A., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction. Syst. Control Lett. 58(3), 225-232 (2009) · Zbl 1159.93317 · doi:10.1016/j.sysconle.2008.10.016
[27] 27.Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012) · Zbl 1268.65037
[28] 28.Antoulas, A.C., Anderson, B.D.Q.: On the scalar rational interpolation problem. IMA J. Math. Control Inf. 3(2-3), 61-88 (1986) · Zbl 0637.93014 · doi:10.1093/imamci/3.2-3.61
[29] 29.Anderson, B.D.O., Antoulas, A.C.: Rational interpolation and state-variable realizations. Linear Algebra Appl. 137, 479-509 (1990) · Zbl 0715.93019 · doi:10.1016/0024-3795(90)90140-8
[30] 30.Lefteriu, S., Antoulas, A.C.: A new approach to modeling multiport systems from frequency-domain data. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(1), 14-27 (2010) · doi:10.1109/TCAD.2009.2034500
[31] 31.Beattie, C.A., Gugercin, S.: Realization-independent · Zbl 1373.93087
[32] 32.Gustavsen, B.: Improving the pole relocating properties of vector fitting. IEEE Trans. Power Delivery 21(3), 1587-1592 (2006) · doi:10.1109/TPWRD.2005.860281
[33] 33.Deschrijver, D., Mrozowski, M., Dhaene, T., De Zutter, D.: Macromodeling of multiport systems using a fast implementation of the vector fitting method. IEEE Microwave Wireless Compon. Lett. 18(6), 383-385 (2008) · doi:10.1109/LMWC.2008.922585
[34] 34.Drmac, Z., Gugercin, S., Beattie, C.: Quadrature-based vector fitting for discretized h_2 approximation. SIAM J. Sci. Comput. 37(2), A625-A652 (2015) · Zbl 1320.93029 · doi:10.1137/140961511
[35] 35.Mitchell, T., Overton, M.L.: Fixed low-order controller design and · doi:10.1016/j.ifacol.2015.09.428
[36] 36.Mitchell, T., Overton, M.L.: Hybrid expansion-contraction: a robust scaleable method for approximating the · Zbl 1433.93100 · doi:10.1093/imanum/drv046
[37] 37.Aliyev, N., Benner, P., Mengi, E., Voigt, M.: Large-scale computation of
[38] 38.Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3-34 (2015) · Zbl 1317.49038 · doi:10.1007/s10107-015-0892-3
[39] 39.Nocedal, J., Wright, S.: Numerical Optimization. Springer Science and Business Media, New York (2006) · Zbl 1104.65059
[40] 40.Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Martí, R.: Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J. Comput. 19(3), 328-340 (2007) · Zbl 1241.90093 · doi:10.1287/ijoc.1060.0175
[41] 41.Castagnotto, A., Varona, M.C., Jeschek, L., Lohmann, B.: sss and sssMOR: Analysis and reduction of large-scale dynamic systems with MATLAB. at-Automatisierungstechnik 65(2), 134-150(2017). doi: · doi:10.1515/auto-2016-0137
[42] 42.Antoulas, A.C., Sorensen, D.C., Gugercin, S.: A survey of model reduction methods for large-scale systems. In: Structured Matrices in Opera Structured, Numerical Analysis, Control, Signal and Image Processing. Contemporary Mathematics, vol. 280, pp. 193-219. AMS Publications, Providence, RI (2001) · Zbl 1048.93014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.