×

Light scalars on cosmological backgrounds. (English) Zbl 1384.83071

Summary: We study the behaviour of a light quartically self-interacting scalar field \(\phi\) on curved backgrounds that may be described with the cosmological equation state parameter \(w\). At leading order in the non-perturbative 2PI expansion we find a general formula for the variance \(\left\langle {\widehat{\phi}}^2\right\rangle \) and show for several previously unexplored cases, including matter domination and kination, that the curvature of space can induce a significant excitation of the field. We discuss how the generation of a non-zero variance for \(w-1\) can be understood as a process of self-regulation of the infrared divergences very similarly to what is known to occur in de Sitter space. To conclude, the appearance of an effective mass due to self-interaction is generic for a light scalar in curved space and can have important implications for reheating, vacuum stability and dark matter generation.

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press (1982). · Zbl 0476.53017
[2] L. Parker and D.J. Toms Quantum Field Theory in Curved Space-time: Quantized Fields and Gravity, Cambridge University Press (2009), pg. 500. · Zbl 1180.81001
[3] N.C. Tsamis and R.P. Woodard, Stochastic quantum gravitational inflation, Nucl. Phys.B 724 (2005) 295 [gr-qc/0505115] [INSPIRE]. · Zbl 1178.83026
[4] E.O. Kahya, V.K. Onemli and R.P. Woodard, The Zeta-Zeta Correlator Is Time Dependent, Phys. Lett.B 694 (2011) 101 [arXiv:1006.3999] [INSPIRE].
[5] D. Seery, Infrared effects in inflationary correlation functions, Class. Quant. Grav.27 (2010) 124005 [arXiv:1005.1649] [INSPIRE]. · Zbl 1190.83128 · doi:10.1088/0264-9381/27/12/124005
[6] K. Enqvist, S. Nurmi, D. Podolsky and G.I. Rigopoulos, On the divergences of inflationary superhorizon perturbations, JCAP04 (2008) 025 [arXiv:0802.0395] [INSPIRE]. · doi:10.1088/1475-7516/2008/04/025
[7] C.P. Burgess, L. Leblond, R. Holman and S. Shandera, Super-Hubble de Sitter Fluctuations and the Dynamical RG, JCAP03 (2010) 033 [arXiv:0912.1608] [INSPIRE]. · doi:10.1088/1475-7516/2010/03/033
[8] A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev.D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
[9] B. Garbrecht, F. Gautier, G. Rigopoulos and Y. Zhu, Feynman Diagrams for Stochastic Inflation and Quantum Field Theory in de Sitter Space, Phys. Rev.D 91 (2015) 063520 [arXiv:1412.4893] [INSPIRE].
[10] B. Garbrecht, G. Rigopoulos and Y. Zhu, Infrared correlations in de Sitter space: Field theoretic versus stochastic approach, Phys. Rev.D 89 (2014) 063506 [arXiv:1310.0367] [INSPIRE].
[11] B. Garbrecht and G. Rigopoulos, Self Regulation of Infrared Correlations for Massless Scalar Fields during Inflation, Phys. Rev.D 84 (2011) 063516 [arXiv:1105.0418] [INSPIRE].
[12] J. Serreau, Effective potential for quantum scalar fields on a de Sitter geometry, Phys. Rev. Lett.107 (2011) 191103 [arXiv:1105.4539] [INSPIRE]. · doi:10.1103/PhysRevLett.107.191103
[13] A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, Lect. Notes Phys.246 (1986) 107 [INSPIRE]. · doi:10.1007/3-540-16452-9_6
[14] K.-i. Nakao, Y. Nambu and M. Sasaki, Stochastic Dynamics of New Inflation, Prog. Theor. Phys.80 (1988) 1041 [INSPIRE]. · doi:10.1143/PTP.80.1041
[15] Y. Nambu and M. Sasaki, Stochastic Approach to Chaotic Inflation and the Distribution of Universes, Phys. Lett.B 219 (1989) 240 [INSPIRE].
[16] A.D. Linde, D.A. Linde and A. Mezhlumian, From the Big Bang theory to the theory of a stationary universe, Phys. Rev.D 49 (1994) 1783 [gr-qc/9306035] [INSPIRE].
[17] T. Prokopec, N.C. Tsamis and R.P. Woodard, Stochastic Inflationary Scalar Electrodynamics, Annals Phys.323 (2008) 1324 [arXiv:0707.0847] [INSPIRE]. · Zbl 1151.81030 · doi:10.1016/j.aop.2007.08.008
[18] F. Finelli, G. Marozzi, A.A. Starobinsky, G.P. Vacca and G. Venturi, Generation of fluctuations during inflation: Comparison of stochastic and field-theoretic approaches, Phys. Rev.D 79 (2009) 044007 [arXiv:0808.1786] [INSPIRE].
[19] F. Finelli, G. Marozzi, A.A. Starobinsky, G.P. Vacca and G. Venturi, Stochastic growth of quantum fluctuations during slow-roll inflation, Phys. Rev.D 82 (2010) 064020 [arXiv:1003.1327] [INSPIRE].
[20] T. Prokopec, Symmetry breaking and the Goldstone theorem in de Sitter space, JCAP12 (2012) 023 [arXiv:1110.3187] [INSPIRE]. · doi:10.1088/1475-7516/2012/12/023
[21] K. Kainulainen, S. Nurmi, T. Tenkanen, K. Tuominen and V. Vaskonen, Isocurvature Constraints on Portal Couplings, JCAP06 (2016) 022 [arXiv:1601.07733] [INSPIRE]. · doi:10.1088/1475-7516/2016/06/022
[22] V. Vennin and A.A. Starobinsky, Correlation Functions in Stochastic Inflation, Eur. Phys. J.C 75 (2015) 413 [arXiv:1506.04732] [INSPIRE].
[23] S. Nurmi, T. Tenkanen and K. Tuominen, Inflationary Imprints on Dark Matter, JCAP11 (2015) 001 [arXiv:1506.04048] [INSPIRE]. · doi:10.1088/1475-7516/2015/11/001
[24] H. Assadullahi, H. Firouzjahi, M. Noorbala, V. Vennin and D. Wands, Multiple Fields in Stochastic Inflation, JCAP06 (2016) 043 [arXiv:1604.04502] [INSPIRE]. · doi:10.1088/1475-7516/2016/06/043
[25] V. Vennin, H. Assadullahi, H. Firouzjahi, M. Noorbala and D. Wands, Critical Number of Fields in Stochastic Inflation, Phys. Rev. Lett.118 (2017) 031301 [arXiv:1604.06017] [INSPIRE]. · doi:10.1103/PhysRevLett.118.031301
[26] I. Moss and G. Rigopoulos, Effective long wavelength scalar dynamics in de Sitter, JCAP05 (2017) 009 [arXiv:1611.07589] [INSPIRE]. · Zbl 1515.83411 · doi:10.1088/1475-7516/2017/05/009
[27] R.J. Hardwick, V. Vennin, C.T. Byrnes, J. Torrado and D. Wands, The stochastic spectator, JCAP10 (2017) 018 [arXiv:1701.06473] [INSPIRE]. · doi:10.1088/1475-7516/2017/10/018
[28] G. Karakaya and V.K. Onemli, Quantum Effects of Mass on Scalar Field Correlations and Fluctuations during Inflation, arXiv:1710.06768 [INSPIRE].
[29] J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective Action for Composite Operators, Phys. Rev.D 10 (1974) 2428 [INSPIRE]. · Zbl 1110.81324
[30] J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc.739 (2005) 3 [hep-ph/0409233] [INSPIRE].
[31] J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept.359 (2002) 355 [hep-ph/0101103] [INSPIRE]. · Zbl 0983.81529
[32] S.A. Ramsey and B.L. Hu, O(N) quantum fields in curved space-time, Phys. Rev.D 56 (1997) 661 [gr-qc/9706001] [INSPIRE].
[33] M.S. Sloth, On the one loop corrections to inflation and the CMB anisotropies, Nucl. Phys.B 748 (2006) 149 [astro-ph/0604488] [INSPIRE]. · Zbl 1186.83171
[34] A. Riotto and M.S. Sloth, On Resumming Inflationary Perturbations beyond One-loop, JCAP04 (2008) 030 [arXiv:0801.1845] [INSPIRE]. · doi:10.1088/1475-7516/2008/04/030
[35] A. Tranberg, Quantum field thermalization in expanding backgrounds, JHEP11 (2008) 037 [arXiv:0806.3158] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/037
[36] T. Arai, Nonperturbative Infrared Effects for Light Scalar Fields in de Sitter Space, Class. Quant. Grav.29 (2012) 215014 [arXiv:1111.6754] [INSPIRE]. · Zbl 1266.83092 · doi:10.1088/0264-9381/29/21/215014
[37] T. Arai, Renormalization of the 2PI Hartree-Fock approximation on de Sitter background in the broken phase, Phys. Rev.D 86 (2012) 104064 [arXiv:1204.0476] [INSPIRE].
[38] J. Serreau and R. Parentani, Nonperturbative resummation of de Sitter infrared logarithms in the large-N limit, Phys. Rev.D 87 (2013) 085012 [arXiv:1302.3262] [INSPIRE].
[39] D.L. Lopez Nacir, F.D. Mazzitelli and L.G. Trombetta, Hartree approximation in curved spacetimes revisited: The effective potential in de Sitter spacetime, Phys. Rev.D 89 (2014) 024006 [arXiv:1309.0864] [INSPIRE].
[40] M. Herranen, T. Markkanen and A. Tranberg, Quantum corrections to scalar field dynamics in a slow-roll space-time, JHEP05 (2014) 026 [arXiv:1311.5532] [INSPIRE]. · doi:10.1007/JHEP05(2014)026
[41] H. Ziaeepour, Non-equilibrium evolution of quantum fields during inflation and late accelerating expansion, arXiv:1711.01925 [INSPIRE].
[42] F. Gautier and J. Serreau, Infrared dynamics in de Sitter space from Schwinger-Dyson equations, Phys. Lett.B 727 (2013) 541 [arXiv:1305.5705] [INSPIRE]. · Zbl 1331.81222
[43] J. Serreau, Renormalization group flow and symmetry restoration in de Sitter space, Phys. Lett.B 730 (2014) 271 [arXiv:1306.3846] [INSPIRE]. · Zbl 1381.81089
[44] M. Guilleux and J. Serreau, Quantum scalar fields in de Sitter space from the nonperturbative renormalization group, Phys. Rev.D 92 (2015) 084010 [arXiv:1506.06183] [INSPIRE].
[45] M. Guilleux and J. Serreau, Nonperturbative renormalization group for scalar fields in de Sitter space: beyond the local potential approximation, Phys. Rev.D 95 (2017) 045003 [arXiv:1611.08106] [INSPIRE].
[46] L.H. Ford and L. Parker, Infrared Divergences in a Class of Robertson-Walker Universes, Phys. Rev.D 16 (1977) 245 [INSPIRE].
[47] J. Lankinen and I. Vilja, Gravitational Particle Creation in a Stiff Matter Dominated Universe, JCAP08 (2017) 025 [arXiv:1612.02586] [INSPIRE]. · Zbl 1515.83390 · doi:10.1088/1475-7516/2017/08/025
[48] J. Lankinen and I. Vilja, Decay of a massive particle in a stiff-matter-dominated universe, Phys. Rev.D 96 (2017) 105026 [arXiv:1709.07236] [INSPIRE]. · Zbl 1515.83390
[49] A. Higuchi and N. Rendell, Infrared divergences for free quantum fields in cosmological spacetimes, arXiv:1711.03964 [INSPIRE]. · Zbl 1393.83018
[50] D. Glavan, T. Prokopec and V. Prymidis, Backreaction of a massless minimally coupled scalar field from inflationary quantum fluctuations, Phys. Rev.D 89 (2014) 024024 [arXiv:1308.5954] [INSPIRE].
[51] G. Cho, C.H. Kim and H. Kitamoto, Stochastic Dynamics of Infrared Fluctuations in Accelerating Universe, arXiv:1508.07877 [INSPIRE].
[52] T. Prokopec, Late time solution for interacting scalar in accelerating spaces, JCAP11 (2015) 016 [arXiv:1508.07874] [INSPIRE]. · doi:10.1088/1475-7516/2015/11/016
[53] D. Glavan, T. Prokopec and T. Takahashi, Late-time quantum backreaction of a very light nonminimally coupled scalar, Phys. Rev.D 94 (2016) 084053 [arXiv:1512.05329] [INSPIRE].
[54] D. Glavan, T. Prokopec and A.A. Starobinsky, Stochastic dark energy from inflationary quantum fluctuations, arXiv:1710.07824 [INSPIRE].
[55] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman and Company, San Francisco (1973), pg. 1279.
[56] N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. Inst. H. Poincare Phys. Theor.A 9 (1968) 109 [INSPIRE]. · Zbl 0162.57802
[57] T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond.A 360 (1978) 117 [INSPIRE].
[58] T. Markkanen and A. Rajantie, Massive scalar field evolution in de Sitter, JHEP01 (2017) 133 [arXiv:1607.00334] [INSPIRE]. · Zbl 1373.83019 · doi:10.1007/JHEP01(2017)133
[59] J.I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications, Cambridge University Press (2006) [INSPIRE]. · Zbl 1121.70002
[60] B. Allen, Vacuum States in de Sitter Space, Phys. Rev.D 32 (1985) 3136 [INSPIRE].
[61] F. Cooper, S. Habib, Y. Kluger, E. Mottola, J.P. Paz and P.R. Anderson, Nonequilibrium quantum fields in the large-N expansion, Phys. Rev.D 50 (1994) 2848 [hep-ph/9405352] [INSPIRE].
[62] F. Cooper, S. Habib, Y. Kluger and E. Mottola, Nonequilibrium dynamics of symmetry breaking in λΦ4field theory, Phys. Rev.D 55 (1997) 6471 [hep-ph/9610345] [INSPIRE].
[63] D. Boyanovsky, H.J. de Vega and N.G. Sanchez, Quantum corrections to slow roll inflation and new scaling of superhorizon fluctuations, Nucl. Phys.B 747 (2006) 25 [astro-ph/0503669] [INSPIRE].
[64] D. Glavan, T. Prokopec and D.C. van der Woude, Late-time quantum backreaction from inflationary fluctuations of a nonminimally coupled massless scalar, Phys. Rev.D 91 (2015) 024014 [arXiv:1408.4705] [INSPIRE].
[65] T.M. Janssen, S.P. Miao, T. Prokopec and R.P. Woodard, The Hubble Effective Potential, JCAP05 (2009) 003 [arXiv:0904.1151] [INSPIRE]. · doi:10.1088/1475-7516/2009/05/003
[66] A. Pilaftsis and D. Teresi, Exact RG Invariance and Symmetry Improved 2PI Effective Potential, Nucl. Phys.B 920 (2017) 298 [arXiv:1703.02079] [INSPIRE]. · Zbl 1364.81177
[67] G.N. Felder, J. García-Bellido, P.B. Greene, L. Kofman, A.D. Linde and I. Tkachev, Dynamics of symmetry breaking and tachyonic preheating, Phys. Rev. Lett.87 (2001) 011601 [hep-ph/0012142] [INSPIRE].
[68] G.N. Felder, L. Kofman and A.D. Linde, Tachyonic instability and dynamics of spontaneous symmetry breaking, Phys. Rev.D 64 (2001) 123517 [hep-th/0106179] [INSPIRE].
[69] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev.D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
[70] M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett.113 (2014) 211102 [arXiv:1407.3141] [INSPIRE]. · doi:10.1103/PhysRevLett.113.211102
[71] M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and Higgs stability after inflation, Phys. Rev. Lett.115 (2015) 241301 [arXiv:1506.04065] [INSPIRE]. · doi:10.1103/PhysRevLett.115.241301
[72] E.W. Kolb and A.J. Long, Superheavy dark matter through Higgs portal operators, Phys. Rev.D 96 (2017) 103540 [arXiv:1708.04293] [INSPIRE].
[73] T. Markkanen and S. Nurmi, Dark matter from gravitational particle production at reheating, JCAP02 (2017) 008 [arXiv:1512.07288] [INSPIRE]. · Zbl 1515.83401 · doi:10.1088/1475-7516/2017/02/008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.