×

Discontinuous Galerkin based isogeometric analysis for geometric flows and applications in geometric modeling. (English) Zbl 1384.65065

Summary: We propose a method which combines isogeometric analysis with the discontinuous Galerkin (DG) method for second and fourth order geometric flows to generate fairing surfaces, which are composed of multiple patches. This technique can be used to tackle a challenging problem in geometric modeling-gluing multi-patches together smoothly to create complex models. Non-uniform rational B-splines (NURBS), the most popular representations of geometric models developed in Computer Aided Design, are employed to describe the geometry and represent the numerical solution. Since NURBS basis functions over two different patches are independent, DG methods can be appropriately applied to glue the multiple patches together to obtain smooth solutions. We present semi-discrete DG schemes to solve the problem, and \(\mathcal L^2\)-stability is proved for the proposed schemes. Our method enjoys the following advantages. Firstly, the geometric flexibility of NURBS basis functions, especially the use of multiple patches, enable us to construct surface models with complex geometry and topology. Secondly, the constructed geometry is fair. Thirdly, since only the control points of the NURBS patches evolve in accordance with the geometric flows, and their number (degrees of freedom) is very small, our algorithm is very efficient. Finally, this method can be easily formulated and implemented. We apply the method in mean curvature flows and in quasi surface diffusion flows to solve various geometric modeling problems, such as minimal surface generation, surface blending and hole filling, etc. Examples are provided to illustrate the effectiveness of our method.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65D17 Computer-aided design (modeling of curves and surfaces)
Full Text: DOI

References:

[1] Apostolatos, A., Schmidt, R., Wuchner, R., Bletzinger, K.U.: A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Int. J. Numer. Methods Eng. 97, 473-504 (2014) · Zbl 1352.74315 · doi:10.1002/nme.4568
[2] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749-1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[3] Bazilevs, Y., Beirao de Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(07), 1031-1090 (2006) · Zbl 1103.65113 · doi:10.1142/S0218202506001455
[4] Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 173-201 (2007) · Zbl 1169.76352 · doi:10.1016/j.cma.2007.07.016
[5] Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput. Mech. 43, 3-37 (2008) · Zbl 1169.74015 · doi:10.1007/s00466-008-0315-x
[6] Bloor, M.I.G., Wilson, M.J.: Generating blend surfaces using partial differential equations. Comput. Aided Des. 21(3), 165-171 (1989) · Zbl 0669.65006 · doi:10.1016/0010-4485(89)90071-7
[7] Bloor, M.I.G., Wilson, M.J.: Generating N-sided patches with partial differential equations. In: Advances in Computer Graphics, pp. 129-145. Springer, Berlin, (1989) · Zbl 1011.68538
[8] Bloor, M.I.G., Wilson, M.J.: Using partial differential equations to generate free-form surfaces. Comput. Aided Des. 22(4), 221-234 (1990) · Zbl 0754.65016 · doi:10.1016/0010-4485(90)90049-I
[9] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[10] Brivadis, E., Buffa, A., Wohlmuth, B., Wunderlich, L.: Isogeometric mortar methods. Comput. Methods Appl. Mech. Eng. 284, 292-319 (2015) · Zbl 1334.65195 · doi:10.1016/j.cma.2014.09.012
[11] Chen, C., Xu, G.: Construction of geometric partial differential equations for level sets. J. Comput. Math. 28(1), 105-121 (2010) · Zbl 1224.65049
[12] Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24(4), 737-749 (1987) · Zbl 0632.65112 · doi:10.1137/0724048
[13] Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with boundary conditions. Comput. Aided Geom. Des. 21(5), 427-445 (2004) · Zbl 1069.65546 · doi:10.1016/j.cagd.2004.02.004
[14] Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Proceedings of Viz2000, IEEE Visualization, Salt Lake City, Utah, pp. 397-405 (2000)
[15] Cockburn, B.; Karniadakis, G.; Shu, CW; Cockburn, B. (ed.); Karniadakis, G. (ed.); Shu, CW (ed.), The development of discontinuous Galerkin methods, No. 11, 3-50 (2000), Berlin · Zbl 0989.76045
[16] Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009) · Zbl 1378.65009 · doi:10.1002/9780470749081
[17] Cottrell, J.A., Hughes, T.J.R., Reali, A.: Studies of refinement and continuity in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 196, 4160-4183 (2007) · Zbl 1173.74407 · doi:10.1016/j.cma.2007.04.007
[18] Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257-5296 (2006) · Zbl 1119.74024 · doi:10.1016/j.cma.2005.09.027
[19] Deckelnick, K., Dziuk, G.: A fully descrite numerical scheme for weighted mean curvature flow. Numer. Math. 91, 423-452 (2002) · Zbl 0999.65103 · doi:10.1007/s002110100322
[20] Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139-232 (2005) · Zbl 1113.65097 · doi:10.1017/S0962492904000224
[21] Dedner, A., Madhavan, P., Stinner, B.: Analysis of the discontinuous Galerkin method for elliptic problems on surfaces. IMA J. Numer. Anal. 33(3), 952-973 (2012) · Zbl 1277.65095 · doi:10.1093/imanum/drs033
[22] Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH99, Los Angeles, USA, pp. 317C324 (2002) · Zbl 1008.65080
[23] Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin (2012) · Zbl 1231.65209 · doi:10.1007/978-3-642-22980-0
[24] Farin, G.: Curves and Surfaces for CAGD, 5th edn. Morgan Kaufmann Publishers, Burlington (2002)
[25] Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37(2), 139-161 (2008) · Zbl 1203.65254 · doi:10.1007/s10915-008-9200-1
[26] Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[27] Langer, U., Moore, S.E.: Discontinuous Galerkin Isogeometric Analysis of Elliptic PDEs on Surfaces, arXiv:1402.1185 (2014) · Zbl 1339.65219
[28] Li, M., Xu, G.: \[G^1\] G1 B-spline surface construction by geometric partial differential equations. J. Comput. Aided Des. Comput. Graphics 22(7), 1087-1093 (2010)
[29] Ohtake, Y., Belyaev, A.G., Bogaevski, I.A.: Polyhedral surface smoothing with simultaneous mesh regularization. In: Geometric Modeling and Processing Proceedings, pp. 229-237 (2000) · Zbl 1103.65113
[30] Riviere, B.: Discontinuous Galerkin methods for Solving Elliptic and Parabolic Equations. Society for Industrial and Applied Mathematics, SIAM, Philadelphia (2008) · Zbl 1153.65112 · doi:10.1137/1.9780898717440
[31] Schneider, R., Kobbelt, L.: Generating fair meshes with \[G^1\] G1 boundary conditions. In: Geometric Modeling and Processing, Hong Kong, China, pp. 251-261 (2000)
[32] Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Comput. Aided Geom. Des. 18(4), 359-379 (2001) · Zbl 0969.68154 · doi:10.1016/S0167-8396(01)00036-X
[33] Xu, G., Zhang, Q.: A general framework for surface modeling using geometric partial differential equations. Comput. Aided Geom. Des. 18(4), 359-379 (2001) · Zbl 0969.68154 · doi:10.1016/S0167-8396(01)00036-X
[34] Xu, G., Zhang, Q.: Geometric Partial Differential Equation Methods in Computational Geometry. Science Press, Beijing (2013)
[35] Yoshizawa, S., Belyaev, A.G.: Fair triangle mesh generation with discrete elastica. In: Geometric Modeling and Processing, Saitama, Japan, pp. 119-123 (2002) · Zbl 0969.68154
[36] Zhang, F., Xu, Y., Chen, F.: Discontinuous Galerkin methods for isogeometric analysis for elliptic equations on surfaces. Commun. Math. Stat. 2, 431-461 (2014) · Zbl 1310.65149 · doi:10.1007/s40304-015-0049-y
[37] Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 80, 295-314 (2000) · Zbl 1011.68538 · doi:10.1006/cviu.2000.0875
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.