×

Non-geometric Calabi-Yau backgrounds and K3 automorphisms. (English) Zbl 1383.83213

Summary: We consider compactifications of type IIA superstring theory on mirror-folds obtained as K3 fibrations over two-tori with non-geometric monodromies involving mirror symmetries. At special points in the moduli space these are asymmetric Gepner models. The compactifications are constructed from non-geometric automorphisms that arise from the diagonal action of an automorphism of the K3 surface and of an automorphism of the mirror surface. We identify the corresponding gaugings of \( \mathcal{N}=4\) supergravity in four dimensions, and show that the minima of the potential describe the same four-dimensional low-energy physics as the worldsheet formulation in terms of asymmetric Gepner models. In this way, we obtain a class of Minkowski vacua of type II string theory which preserve \( \mathcal{N}=2\) supersymmetry. The massless sector consists of \( \mathcal{N}=2\) supergravity coupled to 3 vector multiplets, giving the STU model. In some cases there are additional massless hypermultiplets.

MSC:

83E50 Supergravity
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32Q25 Calabi-Yau theory (complex-analytic aspects)
83E30 String and superstring theories in gravitational theory

References:

[1] C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP10 (2005) 065 [hep-th/0406102] [INSPIRE]. · doi:10.1088/1126-6708/2005/10/065
[2] A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP09 (2003) 054 [hep-th/0210209] [INSPIRE]. · doi:10.1088/1126-6708/2003/09/054
[3] S. Kawai and Y. Sugawara, Mirrorfolds with K3 fibrations, JHEP02 (2008) 065 [arXiv:0711.1045] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/065
[4] M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys.B 459 (1996) 125 [hep-th/9508094] [INSPIRE]. · Zbl 0925.81167 · doi:10.1016/0550-3213(95)00555-2
[5] J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys.B 153 (1979) 61 [INSPIRE]. · doi:10.1016/0550-3213(79)90592-3
[6] N. Seiberg, Observations on the Moduli Space of Superconformal Field Theories, Nucl. Phys.B 303 (1988) 286 [INSPIRE]. · doi:10.1016/0550-3213(88)90183-6
[7] P.S. Aspinwall and D.R. Morrison, String theory on K3 surfaces, hep-th/9404151 [INSPIRE]. · Zbl 0931.14020
[8] D. Israël and V. Thiéry, Asymmetric Gepner models in type-II, JHEP02 (2014) 011 [arXiv:1310.4116] [INSPIRE]. · Zbl 1333.83193 · doi:10.1007/JHEP02(2014)011
[9] D. Israël, Nongeometric Calabi-Yau compactifications and fractional mirror symmetry, Phys. Rev.D 91 (2015) 066005 [Erratum ibid.D 91 (2015) 129902] [arXiv:1503.01552] [INSPIRE].
[10] A.N. Schellekens and S. Yankielowicz, New Modular Invariants for N = 2 Tensor Products and Four-dimensional Strings, Nucl. Phys.B 330 (1990) 103 [INSPIRE]. · doi:10.1016/0550-3213(90)90303-U
[11] K.A. Intriligator and C. Vafa, Landau-Ginzburg ORBIFOLDS, Nucl. Phys.B 339 (1990) 95 [INSPIRE]. · doi:10.1016/0550-3213(90)90535-L
[12] R. Blumenhagen, M. Fuchs and E. Plauschinn, Partial SUSY Breaking for Asymmetric Gepner Models and Non-geometric Flux Vacua, JHEP01 (2017) 105 [arXiv:1608.00595] [INSPIRE]. · Zbl 1373.81315 · doi:10.1007/JHEP01(2017)105
[13] R. Blumenhagen, M. Fuchs and E. Plauschinn, The Asymmetric CFT Landscape in D = 4,6,8 with Extended Supersymmetry, Fortsch. Phys.65 (2017) 1700006 [arXiv:1611.04617]. · Zbl 1371.81269 · doi:10.1002/prop.201700006
[14] H. Pinkham, Singularités exceptionnelles, la dualité étrange d’Arnold et les surfaces K − 3, C. R. Acad. Sci. Paris Sér. A-B284 (1977) A615. · Zbl 0375.14004
[15] I. Dolgachev and V.V. Nikulin, Exceptional singularities of v.i. Arnold and K3 surfaces, in Proceedigs of USSR Topological Conference, Minsk USSR (1977).
[16] I. Dolgachev, Integral quadratic forms: applications to algebraic geometry (after V. Nikulin), Séminaire Bourbaki25 (1982) 251. · Zbl 0535.10018
[17] V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv.14 (1980) 103. · Zbl 0427.10014 · doi:10.1070/IM1980v014n01ABEH001060
[18] I.V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, alg-geom/9502005 [INSPIRE]. · Zbl 0890.14024
[19] P. Berglund and T. Hubsch, A Generalized construction of mirror manifolds, Nucl. Phys.B 393 (1993) 377 [hep-th/9201014] [INSPIRE]. · Zbl 1245.14039 · doi:10.1016/0550-3213(93)90250-S
[20] B.R. Greene and M.R. Plesser, Duality in Calabi-Yau Moduli Space, Nucl. Phys.B 338 (1990) 15 [INSPIRE]. · doi:10.1016/0550-3213(90)90622-K
[21] V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Mosc. Math. Soc.2 (1980) 71. · Zbl 0454.14017
[22] M. Artebani, S. Boissière and A. Sarti, The Berglund-Hübsch-Chiodo-Ruan mirror symmetry for K3 surfaces, J. Math. Pures Appl.102 (2014) 758 [arXiv:1108.2780]. · Zbl 1315.14051 · doi:10.1016/j.matpur.2014.02.005
[23] P. Comparin, C. Lyons, N. Priddis and R. Suggs, The mirror symmetry of K3 surfaces with non-symplectic automorphisms of prime order, Adv. Theor. Math. Phys.18 (2014) 1335 [arXiv:1211.2172] [INSPIRE]. · Zbl 1346.14100 · doi:10.4310/ATMP.2014.v18.n6.a4
[24] C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys.B 438 (1995) 109 [hep-th/9410167] [INSPIRE]. · Zbl 1052.83532 · doi:10.1016/0550-3213(94)00559-W
[25] D. Gepner, Space-Time Supersymmetry in Compactified String Theory and Superconformal Models, Nucl. Phys.B 296 (1988) 757 [INSPIRE]. · doi:10.1016/0550-3213(88)90397-5
[26] M. Krawitz, N. Priddis, P. Acosta, N. Bergin and H. Rathnakumara, FJRW-Rings and Mirror Symmetry, Commun. Math. Phys.296 (2010) 145 [arXiv:0906.0976]. · Zbl 1250.81087 · doi:10.1007/s00220-009-0929-7
[27] A. Chiodo and Y. Ruan, LG/CY correspondence: The state space isomorphism, Adv. Math.227 (2011) 2157 [arXiv:0908.0908]. · Zbl 1245.14038 · doi:10.1016/j.aim.2011.04.011
[28] S.-M. Belcastro, Picard lattices of families of k3 surfaces, Commun. Algebra30 (2002) 61. · Zbl 1053.14045 · doi:10.1081/AGB-120006479
[29] M. Artebani, A. Sarti and S. Taki, K3 surfaces with non-symplectic automorphisms of prime order, Math. Z.268 (2011) 507. · Zbl 1218.14024 · doi:10.1007/s00209-010-0681-x
[30] W. Barth, C. Peters and A. Van de Ven, Results in Mathematics and Related Areas (3). Vol. 4: Compact complex surfaces, Springer-Verlag, Berlin Germany (1984). · Zbl 0718.14023
[31] P. Comparin and N. Priddis, Equivalence of mirror constructions for K3 surfaces with non-symplectic automorphism, arXiv:1704.00354 [INSPIRE]. · Zbl 1346.14100
[32] J.H. Conway, N.J.A. Sloane and E. Bannai, Sphere-packings, Lattices, and Groups, Springer-Verlag, New York U.S.A. (1987).
[33] C. Vafa, String Vacua and Orbifoldized L-G Models, Mod. Phys. Lett.A 4 (1989) 1169 [INSPIRE]. · doi:10.1142/S0217732389001350
[34] C. Vafa, Quantum Symmetries of String Vacua, Mod. Phys. Lett.A 4 (1989) 1615 [INSPIRE]. · doi:10.1142/S0217732389001842
[35] E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys.A 9 (1994) 4783 [hep-th/9304026] [INSPIRE]. · Zbl 0985.81718 · doi:10.1142/S0217751X9400193X
[36] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys.B 403 (1993) 159 [hep-th/9301042] [INSPIRE]. · Zbl 0910.14020 · doi:10.1016/0550-3213(93)90033-L
[37] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE]. · Zbl 1044.14018
[38] C.M. Hull and R.A. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys.57 (2009) 862 [hep-th/0503114] [INSPIRE]. · Zbl 1178.81222 · doi:10.1002/prop.200900076
[39] N. Kaloper and R.C. Myers, The Odd story of massive supergravity, JHEP05 (1999) 010 [hep-th/9901045] [INSPIRE]. · Zbl 0955.83037 · doi:10.1088/1126-6708/1999/05/010
[40] M. Porrati and F. Zwirner, Supersymmetry Breaking in String Derived Supergravities, Nucl. Phys.B 326 (1989) 162 [INSPIRE]. · doi:10.1016/0550-3213(89)90438-0
[41] M. Weidner, Gauged supergravities in various spacetime dimensions, Fortsch. Phys.55 (2007) 843 [hep-th/0702084] [INSPIRE]. · Zbl 1121.83002 · doi:10.1002/prop.200710390
[42] J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP05 (2006) 034 [hep-th/0602024] [INSPIRE]. · doi:10.1088/1126-6708/2006/05/034
[43] B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP06 (2007) 049 [arXiv:0705.2101] [INSPIRE]. · Zbl 1207.83073 · doi:10.1088/1126-6708/2007/06/049
[44] R.A. Reid-Edwards and B. Spanjaard, N = 4 Gauged Supergravity from Duality-Twist Compactifications of String Theory, JHEP12 (2008) 052 [arXiv:0810.4699] [INSPIRE]. · Zbl 1329.83197 · doi:10.1088/1126-6708/2008/12/052
[45] C. Horst, J. Louis and P. Smyth, Electrically gauged N = 4 supergravities in D = 4 with N = 2 vacua, JHEP03 (2013) 144 [arXiv:1212.4707] [INSPIRE]. · Zbl 1342.83481 · doi:10.1007/JHEP03(2013)144
[46] I.V. Dolgachev and S. Kondō, Moduli of K3 Surfaces and Complex Ball Quotients, Birkhäuser, Basel Switzerland (2007), pg. 43. · Zbl 1124.14032
[47] S. Chaudhuri, G. Hockney and J.D. Lykken, Maximally supersymmetric string theories in D < 10, Phys. Rev. Lett.75(1995) 2264 [hep-th/9505054] [INSPIRE]. · Zbl 1020.81763 · doi:10.1103/PhysRevLett.75.2264
[48] E. Bayer-Fluckiger, Lattices and number fields, in Contemporary Mathematics. Vol. 241: Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), AMS Press, Providence U.S.A. (1999). · Zbl 0916.11023
[49] D. Allcock, J.A. Carlson and D. Toledo, Memoirs of the American Mathematical Society. Vol. 209: The moduli space of cubic threefolds as a ball quotient, AMS Press, Providence U.S.A. (2011). · Zbl 1211.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.