×

Non-extremal superdescendants of the D1D5 CFT. (English) Zbl 1383.81187

Summary: We construct solutions of IIB supergravity dual to non-supersymmetric states of the D1D5 system. These solutions are constructed as perturbations carrying both left and right moving momentum around the maximally rotating D1D5 ground state at linear order. They are found by extending to the asymptotically flat region the geometry generated in the decoupling limit by the action of left and right R-currents on a known D1D5 microstate. The perturbations are regular everywhere and do not carry any global charge. We also study the near-extremal limit of the solutions and derive the first non-trivial correction to the extremal geometry.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C57 Black holes
83E30 String and superstring theories in gravitational theory
83E50 Supergravity

References:

[1] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE]. · Zbl 1376.83026 · doi:10.1016/0370-2693(96)00345-0
[2] R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys.185 (1997) 197 [hep-th/9608096] [INSPIRE]. · Zbl 0872.32006 · doi:10.1007/s002200050087
[3] J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal type II string theory, hep-th/9903163 [INSPIRE].
[4] I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP04 (2007) 023 [hep-th/0611171] [INSPIRE]. · doi:10.1088/1126-6708/2007/04/023
[5] I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP06 (2007) 056 [arXiv:0704.0690] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/056
[6] S. Giusto, E. Moscato and R. Russo, AdS3holography for 1/4 and 1/8 BPS geometries, JHEP11 (2015) 004 [arXiv:1507.00945] [INSPIRE]. · Zbl 1388.83659
[7] O. Lunin and S.D. Mathur, The slowly rotating near extremal D1-D5 system as a ‘hot tube’, Nucl. Phys.B 615 (2001) 285 [hep-th/0107113] [INSPIRE]. · Zbl 0988.81093
[8] S.G. Avery, B.D. Chowdhury and S.D. Mathur, Emission from the D1-D5 CFT, JHEP10 (2009) 065 [arXiv:0906.2015] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/065
[9] V. Balasubramanian et al., Holographic thermalization, Phys. Rev.D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
[10] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE]. · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[11] S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1-D5 CFT away from the orbifold point, JHEP06 (2010) 031 [arXiv:1002.3132] [INSPIRE]. · Zbl 1290.81097 · doi:10.1007/JHEP06(2010)031
[12] Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the deformation operator in the D1-D5 CFT, JHEP01 (2015) 071 [arXiv:1410.4543] [INSPIRE]. · doi:10.1007/JHEP01(2015)071
[13] B.A. Burrington, S.D. Mathur, A.W. Peet and I.G. Zadeh, Analyzing the squeezed state generated by a twist deformation, Phys. Rev.D 91 (2015) 124072 [arXiv:1410.5790] [INSPIRE].
[14] S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys.53 (2005) 793 [hep-th/0502050] [INSPIRE]. · Zbl 1116.83300 · doi:10.1002/prop.200410203
[15] K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept.467 (2008) 117 [arXiv:0804.0552] [INSPIRE]. · doi:10.1016/j.physrep.2008.08.001
[16] V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav.25 (2008) 214004 [arXiv:0811.0263] [INSPIRE]. · Zbl 1152.83303 · doi:10.1088/0264-9381/25/21/214004
[17] B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system, arXiv:1001.1444 [INSPIRE].
[18] I. Bena and N.P. Warner, Resolving the structure of black holes: philosophizing with a hammer, arXiv:1311.4538 [INSPIRE].
[19] O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys.B 623 (2002) 342 [hep-th/0109154] [INSPIRE]. · Zbl 1036.83503
[20] J. de Boer, Six-dimensional supergravity on S3×AdS3and 2D conformal field theory, Nucl. Phys.B 548 (1999) 139 [hep-th/9806104] [INSPIRE]. · Zbl 0944.83032
[21] I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE]. · Zbl 1388.83739 · doi:10.1007/JHEP05(2015)110
[22] I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum fractionation on superstrata, JHEP05 (2016) 064 [arXiv:1601.05805] [INSPIRE]. · Zbl 1388.83741 · doi:10.1007/JHEP05(2016)064
[23] I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett.117 (2016) 201601 [arXiv:1607.03908] [INSPIRE]. · doi:10.1103/PhysRevLett.117.201601
[24] I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric solutions in six dimensions: a linear structure, JHEP03 (2012) 084 [arXiv:1110.2781] [INSPIRE]. · Zbl 1309.81197 · doi:10.1007/JHEP03(2012)084
[25] S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys.B 680 (2004) 415 [hep-th/0311092] [INSPIRE]. · Zbl 1036.83016
[26] S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP05 (2012) 014 [arXiv:1112.6413] [INSPIRE]. · doi:10.1007/JHEP05(2012)014
[27] S.D. Mathur and D. Turton, Momentum-carrying waves on D1-D5 microstate geometries, Nucl. Phys.B 862 (2012) 764 [arXiv:1202.6421] [INSPIRE]. · Zbl 1246.83131
[28] M. Shigemori, Perturbative 3-charge microstate geometries in six dimensions, JHEP10 (2013) 169 [arXiv:1307.3115] [INSPIRE]. · Zbl 1342.83507 · doi:10.1007/JHEP10(2013)169
[29] O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries, Nucl. Phys.B 868 (2013) 383 [arXiv:1208.1770] [INSPIRE]. · Zbl 1262.83050
[30] S. Giusto and R. Russo, Superdescendants of the D1-D5 CFT and their dual 3-charge geometries, JHEP03 (2014) 007 [arXiv:1311.5536] [INSPIRE]. · doi:10.1007/JHEP03(2014)007
[31] V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev.D 71 (2005) 124030 [hep-th/0504181] [INSPIRE].
[32] S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys.B 710 (2005) 425 [hep-th/0406103] [INSPIRE]. · Zbl 1115.81385
[33] B. Chakrabarty, D. Turton and A. Virmani, Holographic description of non-supersymmetric orbifolded D1-D5-P solutions, JHEP11 (2015) 063 [arXiv:1508.01231] [INSPIRE]. · Zbl 1388.83405 · doi:10.1007/JHEP11(2015)063
[34] S.D. Mathur and D. Turton, Oscillating supertubes and neutral rotating black hole microstates, JHEP04 (2014) 072 [arXiv:1310.1354] [INSPIRE]. · doi:10.1007/JHEP04(2014)072
[35] G. Bossard and S. Katmadas, A bubbling bolt, JHEP07 (2014) 118 [arXiv:1405.4325] [INSPIRE]. · doi:10.1007/JHEP07(2014)118
[36] G. Bossard and S. Katmadas, Floating JMaRT, JHEP04 (2015) 067 [arXiv:1412.5217] [INSPIRE]. · Zbl 1388.83754 · doi:10.1007/JHEP04(2015)067
[37] I. Bena, G. Bossard, S. Katmadas and D. Turton, Non-BPS multi-bubble microstate geometries, JHEP02 (2016) 073 [arXiv:1511.03669] [INSPIRE]. · Zbl 1388.83738 · doi:10.1007/JHEP02(2016)073
[38] I. Bena, G. Bossard, S. Katmadas and D. Turton, Bolting multicenter solutions, JHEP01 (2017) 127 [arXiv:1611.03500] [INSPIRE]. · Zbl 1373.83096 · doi:10.1007/JHEP01(2017)127
[39] S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys.B 876 (2013) 509 [arXiv:1306.1745] [INSPIRE]. · Zbl 1284.83161
[40] S.G. Avery, Using the D1-D5 CFT to understand black holes, arXiv:1012.0072 [INSPIRE].
[41] K. Skenderis and M. Taylor, Fuzzball solutions and D1-D5 microstates, Phys. Rev. Lett.98 (2007) 071601 [hep-th/0609154] [INSPIRE]. · Zbl 1228.81243
[42] P. Roy, Y.K. Srivastava and A. Virmani, Hair on non-extremal D1-D5 bound states, JHEP09 (2016) 145 [arXiv:1607.05405] [INSPIRE]. · Zbl 1390.83421 · doi:10.1007/JHEP09(2016)145
[43] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: towards a string theoretic description of black hole formation, Phys. Rev.D 64 (2001) 064011 [hep-th/0011217] [INSPIRE].
[44] J.M. Maldacena and L. Maoz, Desingularization by rotation, JHEP12 (2002) 055 [hep-th/0012025] [INSPIRE]. · doi:10.1088/1126-6708/2002/12/055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.