×

Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers. (English) Zbl 1383.76582

Summary: We establish through numerical simulation conditions for optimal undulatory propulsion for a single fish, and for a pair of hydrodynamically interacting fish, accounting for linear and angular recoil. We first employ systematic two-dimensional (2-D) simulations to identify conditions for minimal propulsive power of a self-propelled fish, and continue with targeted 3-D simulations for a danio-like fish; all at Reynolds number 5000. We find that the Strouhal number, phase angle between heave and pitch at the trailing edge, and angle of attack are principal parameters. For 2-D simulations, imposing a deformation based on measured displacement for carangiform swimming provides, at best, efficiency of 35 %, which increases to 50 % for an optimized motion; for a 3-D fish, the efficiency increases from 22 % to 34 %. Indeed, angular recoil has significant impact on efficiency, and optimized body bending requires maximum bending amplitude upstream of the trailing edge. Next, we turn to 2-D simulation of two hydrodynamically interacting fish. We find that the upstream fish benefits energetically only for small distances. In contrast, the downstream fish can benefit at any position that allows interaction with the upstream wake, provided its body motion is timed appropriately with respect to the oncoming vortices. For an in-line configuration, one body length apart, the efficiency of the downstream fish can increase from 50 % to 60 %; for an offset arrangement it can reach 80 %. This proves that in groups of fish, energy savings can be achieved for downstream fish through interaction with oncoming vortices, even when the downstream fish lies directly inside the jet-like flow of an upstream fish.

MSC:

76Z10 Biopropulsion in water and in air
76F65 Direct numerical and large eddy simulation of turbulence

Software:

MultiMin; BOBYQA; NLopt

References:

[1] Abrahams, M. V.; Colgan, P. W., Fish schools and their hydrodynamic function: a reanalysis, Environ. Biol. Fish., 20, 1, 79-80, (1987) · doi:10.1007/BF00002028
[2] Akanyeti, O.; Liao, J. C., A kinematic model of Karman gaiting in rainbow trout, J. Expl Biol., (2013)
[3] Alben, S., Wake-mediated synchronization and drafting in coupled flags, J. Fluid Mech., 641, 489-496, (2009) · Zbl 1183.76653 · doi:10.1017/S0022112009992138
[4] Anderson, J. M.; Streitlien, K.; Barrett, D. S.; Triantafyllou, M. S., Oscillating foils of high propulsive efficiency, J. Fluid Mech., 360, 41-72, (1998) · Zbl 0922.76023 · doi:10.1017/S0022112097008392
[5] Bainbridge, R.1961Problems of fish locomotion. In Symp. Zool. Soc. Lond., vol. 5, pp. 13-32.
[6] Bale, R.; Hao, M.; Bhalla, A. P. S.; Patankar, N. A., Energy efficiency and allometry of movement of swimming and flying animals, Proc. Natl Acad. Sci., 111, 21, 7517-7521, (2014) · doi:10.1073/pnas.1310544111
[7] Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Liao, J. C.; Lauder, G. V., Passive propulsion in vortex wakes, J. Fluid Mech., 549, 385-402, (2006) · doi:10.1017/S0022112005007925
[8] Bergmann, M.; Iollo, A.; Mittal, R., Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer, Bioinspir. Biomim., 9, 4, (2014) · doi:10.1088/1748-3182/9/4/046001
[9] Blondeaux, P.; Fornarelli, F.; Guglielmini, L.; Triantafyllou, M. S.; Verzicco, R., Numerical experiments on flapping foils mimicking fish-like locomotion, Phys. Fluids, 17, 11, (2005) · Zbl 1188.76015 · doi:10.1063/1.2131923
[10] Borazjani, I.; Sotiropoulos, F., Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes, J. Expl Biol., 211, 10, 1541-1558, (2008) · doi:10.1242/jeb.015644
[11] Borazjani, I.; Sotiropoulos, F., On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming, J. Expl Biol., 213, 1, 89-107, (2010) · doi:10.1242/jeb.030932
[12] Boschitsch, B. M.; Dewey, P. A.; Smits, A. J., Propulsive performance of unsteady tandem hydrofoils in an in-line configuration, Phys. Fluids, 26, 5, (2014) · doi:10.1063/1.4872308
[13] Breder, C. M., The locomotion of fishes, Zoologica, 4, 159-297, (1926)
[14] Carling, J.; Williams, T. L.; Bowtell, G., Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier-Stokes equations and Newton’s laws of motion, J. Expl Biol., 201, 23, 3143-3166, (1998)
[15] Connell, B. S. H.; Yue, D. K. P., Flapping dynamics of a flag in a uniform stream, J. Fluid Mech., 581, 33-67, (2007) · Zbl 1124.76011 · doi:10.1017/S0022112007005307
[16] Daghooghi, M.; Borazjani, I., The hydrodynamic advantages of synchronized swimming in a rectangular pattern, Bioinspir. Biomim., 10, 5, (2015) · doi:10.1088/1748-3190/10/5/056018
[17] Deng, H.-B.; Xu, Y.-Q.; Chen, D.-D.; Dai, H.; Wu, J.; Tian, F.-B., On numerical modeling of animal swimming and flight, Comput. Mech., 52, 6, 1221-1242, (2013) · doi:10.1007/s00466-013-0875-2
[18] Deng, J.; Shao, X.-M., Hydrodynamics in a diamond-shaped fish school Project supported by the National Lab of Hydrodynamics of China, J. Hydrodyn. B, 18, 3, 438-442, (2006) · doi:10.1016/S1001-6058(06)60090-5
[19] Dong, G.-J.; Lu, X.-Y., Characteristics of flow over traveling wavy foils in a side-by-side arrangement, Phys. Fluids, 19, 5, (2007) · Zbl 1146.76370 · doi:10.1063/1.2736083
[20] Dong, H.; Mittal, R.; Najjar, F. M., Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils, J. Fluid Mech., 566, 309-343, (2006) · Zbl 1106.76025 · doi:10.1017/S002211200600190X
[21] Drucker, E. G.; Lauder, G. V., Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish, J. Expl Biol., 204, 17, 2943-2958, (2001)
[22] Eldredge, J. D., Numerical simulations of undulatory swimming at moderate Reynolds number, Bioinspir. Biomim., 1, 4, (2006) · doi:10.1088/1748-3182/1/4/S03
[23] Eloy, C., On the best design for undulatory swimming, J. Fluid Mech., 717, 48-89, (2013) · Zbl 1284.76429 · doi:10.1017/jfm.2012.561
[24] Förster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Meth. Appl. Mech. Engng, 196, 7, 1278-1293, (2007) · Zbl 1173.74418 · doi:10.1016/j.cma.2006.09.002
[25] Gazzola, M.; Argentina, M.; Mahadevan, L., Scaling macroscopic aquatic locomotion, Nat. Phys., 10, 10, 758-761, (2014) · doi:10.1038/nphys3078
[26] Gero, D. R., The hydrodynamic aspects of fish propulsion, Fish propulsion, 1601, 1-32, (1952)
[27] Ginneken, V. V.; Antonissen, E.; Miller, U. K.; Booms, R.; Eding, E.; Verreth, J.; Thillart, G. V. D., Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs, J. Expl Biol., 208, 7, 1329-1335, (2005) · doi:10.1242/jeb.01524
[28] Gopalkrishnan, R.; Triantafyllou, M. S.; Triantafyllou, G. S.; Barrett, D., Active vorticity control in a shear flow using a flapping foil, J. Fluid Mech., 274, 1-21, (1994) · doi:10.1017/S0022112094002016
[29] Gray, J., Studies in animal locomotion. I. The movement of fish with special reference to the eel, J. Expl Biol., 10, 1, 88-104, (1933)
[30] Harper, D. G.; Blake, R. W., Fast-Start Performance of Rainbow Trout Salmo Gairdneri and Northern Pike Esox Lucius, J. Expl Biol., 150, 1, 321-342, (1990)
[31] Hemelrijk, C.; Reid, D.; Hildenbrandt, H.; Padding, J., The increased efficiency of fish swimming in a school, Fish and Fisheries, 16, 3, 511-521, (2015) · doi:10.1111/faf.12072
[32] Ijspeert, A. J., Biorobotics: using robots to emulate and investigate agile locomotion, Science, 346, 6206, 196-203, (2014) · doi:10.1126/science.1254486
[33] Johnson, S. G.2013 The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt.
[34] Kern, S.; Koumoutsakos, P., Simulations of optimized anguilliform swimming, J. Expl Biol., 209, 24, 4841-4857, (2006) · doi:10.1242/jeb.02526
[35] Killen, S. S.; Marras, S.; Steffensen, J. F.; Mckenzie, D. J., Aerobic capacity influences the spatial position of individuals within fish schools, Proc. Biol. Sci., 279, 1727, 357-364, (2012) · doi:10.1098/rspb.2011.1006
[36] Lauder, G. V.; Madden, P. G. A., Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins, Exp. Fluids, 43, 5, 641-653, (2007) · doi:10.1007/s00348-007-0357-4
[37] Liao, J. C., A review of fish swimming mechanics and behaviour in altered flows, Phil. Trans. R. Soc. B: Biol. Sci., 362, 1487, 1973-1993, (2007) · doi:10.1098/rstb.2007.2082
[38] Liao, J. C.; Beal, D. N.; Lauder, G. V.; Triantafyllou, M. S., Fish exploiting vortices decrease muscle activity, Science, 302, 5650, 1566-1569, (2003) · doi:10.1126/science.1088295
[39] Liao, J. C.; Beal, D. N.; Lauder, G. V.; Triantafyllou, M. S., The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street, J Expl Biol., 206, 6, 1059-1073, (2003) · doi:10.1242/jeb.00209
[40] Lighthill, M. J., Note on the swimming of slender fish, J. Fluid Mech., 9, 2, 305-317, (1960) · doi:10.1017/S0022112060001110
[41] Liu, G.; Yu, Y.-L.; Tong, B.-G., Flow control by means of a traveling curvature wave in fishlike escape responses, Phys. Rev. E, 84, 5, (2011)
[42] Maertens, A. P.2015 Fish swimming optimization and exploiting multi-body hydrodynamic interactions for underwater navigation. PhD thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology.
[43] Maertens, A. P., Triantafyllou, M. S. & Yue, D. K. P.2015Efficiency of fish propulsion. Bioinspir. Biomim.; (submitted) (under review).
[44] Maertens, A. P.; Weymouth, G. D., Accurate Cartesian-grid simulations of near-body flows at intermediate Reynolds numbers, Comput. Meth. Appl. Mech. Engng, 283, 106-129, (2015) · Zbl 1423.76180 · doi:10.1016/j.cma.2014.09.007
[45] Marras, S.; Killen, S. S.; Lindstrom, J.; Mckenzie, D. J.; Steffensen, J. F.; Domenici, P., Fish swimming in schools save energy regardless of their spatial position, Behav. Ecol. Sociobiol., 1-8, (2014)
[46] Partridge, B. L.; Pitcher, T. J., Evidence against a hydrodynamic function for fish schools, Nature, 279, 5712, 418-419, (1979) · doi:10.1038/279418a0
[47] Peng, Z.; Zhu, Q., Energy harvesting through flow-induced oscillations of a foil, Phys. Fluids, 21, 12, (2009) · Zbl 1183.76412 · doi:10.1063/1.3275852
[48] Pitcher, T. J.1986Functions of shoaling behaviour in teleosts. In The Behaviour of Teleost Fishes (ed. Pitcher, T. J.), pp. 294-337. Springer. doi:10.1007/978-1-4684-8261-4_12
[49] Portugal, S. J.; Hubel, T. Y.; Fritz, J.; Heese, S.; Trobe, D.; Voelkl, B.; Hailes, S.; Wilson, A. M.; Usherwood, J. R., Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight, Nature, 505, 7483, 399-402, (2014) · doi:10.1038/nature12939
[50] Powell, M. J. D.2009 The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge.
[51] Read, D. A.; Hover, F. S.; Triantafyllou, M. S., Forces on oscillating foils for propulsion and maneuvering, J. Fluids Struct., 17, 1, 163-183, (2003) · doi:10.1016/S0889-9746(02)00115-9
[52] Van Rees, W. M.; Gazzola, M.; Koumoutsakos, P., Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers, J. Fluid Mech., 722, R3, (2013) · Zbl 1287.76259 · doi:10.1017/jfm.2013.157
[53] Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K., Flow around fishlike shapes studied using multiparticle collision dynamics, Phys. Rev. E, 79, 4, (2009)
[54] Reid, D. A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K., Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model, Phys. Rev. E, 85, 2, (2012)
[55] Rios, L. M.; Sahinidis, N. V., Derivative-free optimization: a review of algorithms and comparison of software implementations, J. Glob. Optim., 56, 3, 1247-1293, (2013) · Zbl 1272.90116 · doi:10.1007/s10898-012-9951-y
[56] Roberts, T. J.; Azizi, E., Flexible mechanisms: the diverse roles of biological springs in vertebrate movement, J. Expl Biol., 214, 3, 353-361, (2011) · doi:10.1242/jeb.038588
[57] Sefati, S.; Neveln, I. D.; Roth, E.; Mitchell, T. R. T.; Snyder, J. B.; Maciver, M. A.; Fortune, E. S.; Cowan, N. J., Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability, PNAS, 110, 47, 18798-18803, (2013) · doi:10.1073/pnas.1309300110
[58] Sfakiotakis, M.; Lane, D. M.; Davies, J. B. C., Review of fish swimming modes for aquatic locomotion, IEEE J. Ocean. Engng, 24, 2, 237-252, (1999) · doi:10.1109/48.757275
[59] Shen, L.; Zhang, X.; Yue, D. K. P.; Triantafyllou, M. S., Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion, J. Fluid Mech., 484, 197-221, (2003) · Zbl 1058.76032 · doi:10.1017/S0022112003004294
[60] Shirgaonkar, A. A.; Maciver, M. A.; Patankar, N. A., A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion, J. Comput. Phys., 228, 7, 2366-2390, (2009) · Zbl 1275.76236 · doi:10.1016/j.jcp.2008.12.006
[61] Stefanini, C.; Orofino, S.; Manfredi, L.; Mintchev, S.; Marrazza, S.; Assaf, T.; Capantini, L.; Sinibaldi, E.; Grillner, S.; Walln, P., A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers, Bioinspir. Biomim., 7, 2, (2012) · doi:10.1088/1748-3182/7/2/025001
[62] Streitlien, K.; Triantafyllou, G. S.; Triantafyllou, M. S., Efficient foil propulsion through vortex control, AIAA J., 34, 11, 2315-2319, (1996) · Zbl 0900.76071 · doi:10.2514/3.13396
[63] Toki, G.; Yue, D. K. P., Optimal shape and motion of undulatory swimming organisms, Proc. R. Soc. Lond. B, 279, 1740, 3065-3074, (2012) · Zbl 1273.94459 · doi:10.1098/rspb.2012.0057
[64] Triantafyllou, G. S.; Triantafyllou, M. S.; Grosenbaugh, M. A., Optimal thrust development in oscillating foils with application to fish propulsion, J. Fluids Struct., 7, 2, 205-224, (1993) · doi:10.1006/jfls.1993.1012
[65] Triantafyllou, M. S.; Triantafyllou, G. S., An efficient swimming machine, Sci. Am., 272, 64-70, (1995) · doi:10.1038/scientificamerican0395-64
[66] Triantafyllou, M. S.; Triantafyllou, G. S.; Gopalkrishnan, R., Wake mechanics for thrust generation in oscillating foils, Phys. Fluids A, 3, 12, 2835-2837, (1991) · doi:10.1063/1.858173
[67] Tytell, E. D., The hydrodynamics of eel swimming II. Effect of swimming speed, J. Expl Biol., 207, 19, 3265-3279, (2004) · doi:10.1242/jeb.01139
[68] Tytell, E. D.; Lauder, G. V., The hydrodynamics of eel swimming I. Wake structure, J. Expl Biol., 207, 11, 1825-1841, (2004) · doi:10.1242/jeb.00968
[69] Videler, J. J., Fish Swimming, (1993), Springer · doi:10.1007/978-94-011-1580-3
[70] Videler, J. J.; Hess, F., Fast continuous swimming of two pelagic predators, Saithe (Pollachius virens) and Mackerel (Scomber scombrus): a kinematic analysis, J. Expl Biol., 109, 1, 209-228, (1984)
[71] Webb, P. W., The swimming energetics of trout II. Oxygen consumption and swimming efficiency, J. Expl Biol., 55, 2, 521-540, (1971)
[72] Van Weerden, J. F.; Reid, D. A. P.; Hemelrijk, C. K., A meta-analysis of steady undulatory swimming, Fish Fish, 15, 3, 397-409, (2014) · doi:10.1111/faf.12022
[73] Weihs, D., Hydromechanics of fish schooling, Nature, 241, 5387, 290-291, (1973) · doi:10.1038/241290a0
[74] Weymouth, G. D., Dommermuth, D. G., Hendrickson, K. & Yue, D. K.-P.2006Advancements in Cartesian-grid methods for computational ship hydrodynamics. In 26th Symposium on Naval Hydrodynamics, Rome, Italy, 17-22 September 2006.
[75] Weymouth, G. D.; Triantafyllou, M. S., Ultra-fast escape of a deformable jet-propelled body, J. Fluid Mech., 721, 367-385, (2013) · Zbl 1287.76256 · doi:10.1017/jfm.2013.65
[76] Wibawa, M. S.; Steele, S. C.; Dahl, J. M.; Rival, D. E.; Weymouth, G. D.; Triantafyllou, M. S., Global vorticity shedding for a vanishing wing, J. Fluid Mech., 695, 112-134, (2012) · Zbl 1250.76058 · doi:10.1017/jfm.2011.565
[77] Wolfgang, M. J.; Anderson, J. M.; Grosenbaugh, M. A.; Yue, D. K.; Triantafyllou, M. S., Near-body flow dynamics in swimming fish, J. Expl Biol., 202, 17, 2303-2327, (1999)
[78] Zhu, L.; Peskin, C. S., Interaction of two flapping filaments in a flowing soap film, Phys. Fluids, 15, 7, 1954-1960, (2003) · Zbl 1186.76611 · doi:10.1063/1.1582476
[79] Zhu, Q.; Shoele, K., Propulsion performance of a skeleton-strengthened fin, J. Expl Biol., 211, 13, 2087-2100, (2008) · doi:10.1242/jeb.016279
[80] Zhu, Q.; Wolfgang, M. J.; Yue, D. K. P.; Triantafyllou, M. S., Three-dimensional flow structures and vorticity control in fish-like swimming, J. Fluid Mech., 468, 1-28, (2002) · Zbl 1152.76508 · doi:10.1017/S002211200200143X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.