×

Sheltering the perturbed vortical layer of electroconvection under shear flow. (English) Zbl 1383.76548

Summary: Sheltering of a perturbed vortical layer by a shear flow is a common method to control turbulence and transport in plasma physics. Despite the desire to exploit this phenomenon in wider engineering applications, shear sheltering has rarely been observed in general non-ionized fluids. In this study, we visualize this shear sheltering in a generic neutral-fluid situation in electromembrane desalination: electroconvection (EC) under the Hagen-Poiseuille flow initiated by ion concentration polarization. Our work is the first demonstration of shear sheltering in electrochemical systems. Experiment, numerical simulation and scaling analysis accurately capture the effect by pinpointing the threshold for shear suppression. Determined by balancing the velocity fluctuation (with EC vortices) and the flow shear (with no-slip walls), the threshold for shear suppression is scaled as the EC height. Stable EC with coherent unidirectional vortices occurs under the threshold height, whereas chaotic EC occurs beyond this height as the EC-induced vortical perturbation overwhelms the flow shear. Attractors in a time-delay phase space illustrate this sequence of steady-periodic (stable EC)-chaotic transitions precisely. Going one step further, the shear sheltering effect is decoupled from the shear-independent mechanism of vortex suppression, i.e. vortex sweeping by the mean flow. In the frequency domain, this shear-independent effect is negligible for stable EC (when shear sheltering dominates), whereas it can reduce the level of chaotic fluctuations of chaotic EC (when shear sheltering weakens). Lastly, taken together, we describe the EC-induced convective ion transport by the new scaling law for the electric Nusselt number as a function of the electric Rayleigh number and the Reynolds number. This work not only expands the scientific understanding of EC and the shear sheltering effect, but also affects a broad range of electrochemical applications, including desalination, energy harvesting and sensors.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76R10 Free convection
Full Text: DOI

References:

[1] Bassett, M. R.; Hudson, J. L., Quasiperiodicity and chaos during an electrochemical reaction, J. Phys. Chem., 93, 7, 2731-2737, (1989) · doi:10.1021/j100344a009
[2] Beyer, P.; Benkadda, S.; Fuhr-Chaudier, G.; Garbet, X.; Ghendrih, Ph.; Sarazin, Y., Nonlinear dynamics of transport barrier relaxations in tokamak edge plasmas, Phys. Rev. Lett., 94, (2005) · doi:10.1103/PhysRevLett.94.105001
[3] Choi, J.-H.; Lee, H.-J.; Moon, S.-H., Effects of electrolytes on the transport phenomena in a cation-exchange membrane, J. Colloid Interface Sci., 238, 1, 188-195, (2001) · doi:10.1006/jcis.2001.7510
[4] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 851-1112, (1993) · Zbl 1371.37001 · doi:10.1103/RevModPhys.65.851
[5] Dritschel, D. G., On the stabilization of a two-dimensional vortex strip by adverse shear, J. Fluid. Mech., 206, 193-221, (1989) · doi:10.1017/S0022112089002284
[6] Druzgalski, C. L.; Andersen, M. B.; Mani, A., Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface, Phys. Fluids, 25, 11, (2013) · doi:10.1063/1.4818995
[7] Dukhin, S. S., Electrokinetic phenomena of the second kind and their applications, Adv. Colloid Interface Sci., 35, 173-196, (1991) · doi:10.1016/0001-8686(91)80022-C
[8] Gollub, J. P.; Benson, S. V., Many routes to turbulent convection, J. Fluid Mech., 100, 3, 449-470, (1980) · doi:10.1017/S0022112080001243
[9] Grossmann, S.; Lohse, D., Scaling in thermal convection: a unifying theory, J. Fluid Mech., 407, 27-56, (2000) · Zbl 0972.76045 · doi:10.1017/S0022112099007545
[10] Hunt, J. C. R.; Durbin, P. A., Perturbed vortical layers and shear sheltering, Fluid Dyn. Res., 24, 6, 375-404, (1999) · Zbl 1006.01511 · doi:10.1016/S0169-5983(99)00009-X
[11] Kim, S. J.; Wang, Y.-C.; Lee, J. H.; Jang, H.; Han, J., Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel, Phys. Rev. Lett., 99, (2007)
[12] Kwak, R.; Guan, G.; Peng, W. K.; Han, J., Microscale electrodialysis: concentration profiling and vortex visualization, Desalination, 308, 138-146, (2013) · doi:10.1016/j.desal.2012.07.017
[13] Kwak, R.; Pham, V. S.; Lim, K. M.; Han, J., Shear flow of an electrically charged fluid by ion concentration polarization: scaling laws for electroconvective vortices, Phys. Rev. Lett., 110, 11, (2013) · doi:10.1103/PhysRevLett.110.114501
[14] Kwak, R.; Pham, V. S.; Kim, B.; Chen, L.; Han, J., Enhanced salt removal by unipolar ion conduction in ion concentration polarization desalination, Sci. Rep., 6, (2016)
[15] Mishchuk, N.; Gonzalez-Caballero, F.; Takhistov, P., Electroosmosis of the second kind and current through curved interface, Colloid Surface A, 181, 131-144, (2001) · doi:10.1016/S0927-7757(00)00741-X
[16] Mishchuk, N. A.; Takhistov, P. V., Electroosmosis of the second kind, Colloid Surfaces A, 95, 2, 119-131, (1995) · doi:10.1016/0927-7757(94)02988-5
[17] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Geometry from a time series, Phys. Rev. Lett., 45, 712-716, (1980) · doi:10.1103/PhysRevLett.45.712
[18] Pham, V. S.; Li, Z.; Lim, K. M.; White, J. K.; Han, J., Direct numerical simulation of electroconvective instability and hysteretic current – voltage response of a permselective membrane, Phys. Rev. E, 86, (2012)
[19] Posner, J. D.; Pérez, C. L.; Santiago, J. G., Electric fields yield chaos in microflows, Proc. Natl Acad. Sci. USA, 109, 36, 14353-14356, (2012) · doi:10.1073/pnas.1204920109
[20] Probstein, R., Physicochemical Hydrodynamics: An Introduction, (2003), Wiley
[21] Rubinstein, I.; Shtilman, L., Voltage against current curves of cation exchange membranes, J. Chem. Soc., Faraday Transactions 2: Molecular Chem. Phys., 75, 231-246, (1979) · doi:10.1039/f29797500231
[22] Rubinstein, I.; Zaltzman, B., Electro-osmotically induced convection at a permselective membrane, Phys. Rev. E, 62, 2238-2251, (2000)
[23] Rubinstein, S. M.; Manukyan, G.; Staicu, A.; Rubinstein, I.; Zaltzman, B.; Lammertink, R. G. H.; Mugele, F.; Wessling, M., Direct observation of a nonequilibrium electro-osmotic instability, Phys. Rev. Lett., 101, (2008) · doi:10.1103/PhysRevLett.101.236101
[24] Schoch, R. B.; Han, J.; Renaud, P., Transport phenomena in nanofluidics, Rev. Mod. Phys., 80, 839-883, (2008) · doi:10.1103/RevModPhys.80.839
[25] Shats, M. G.; Xia, H.; Punzmann, H.; Falkovich, G., Suppression of turbulence by self-generated and imposed mean flows, Phys. Rev. Lett., 99, (2007) · doi:10.1103/PhysRevLett.99.164502
[26] Sinha, M.; Kevrekidis, I. G.; Smits, A. J., Experimental study of a Neimark-Sacker bifurcation in axially forced Taylor-Couette flow, J. Fluid Mech., 558, 1-32, (2006) · Zbl 1093.76517 · doi:10.1017/S0022112006009207
[27] Stevens, R. J. A. M.; Van Der Poel, E. P.; Grossmann, S.; Lohse, D., The unifying theory of scaling in thermal convection: the updated prefactors, J. Fluid Mech., 730, 295-308, (2013) · Zbl 1291.76301 · doi:10.1017/jfm.2013.298
[28] Strugarek, A.; Sarazin, Y.; Zarzoso, D.; Abiteboul, J.; Brun, A. S.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph.; Grandgirard, V.; Latu, G.; Passeron, C.; Thomine, O., Unraveling quasiperiodic relaxations of transport barriers with gyrokinetic simulations of tokamak plasmas, Phys. Rev. Lett., 111, (2013) · doi:10.1103/PhysRevLett.111.145001
[29] Swinney, H. L., Observations of order and chaos in nonlinear systems, Physica D, 7, 1, 3-15, (1983) · doi:10.1016/0167-2789(83)90111-2
[30] Terry, P. W., Does flow shear suppress turbulence in nonionized flows?, Phys. Plasmas, 7, 1653-1661, (2000) · doi:10.1063/1.873985
[31] Terry, P. W., Suppression of turbulence and transport by sheared flow, Rev. Mod. Phys., 72, 109-165, (2000) · doi:10.1103/RevModPhys.72.109
[32] Urtenov, M. K.; Uzdenova, A. M.; Kovalenko, A. V.; Nikonenko, V. V.; Pismenskaya, N. D.; Vasil’Eva, V. I.; Sistat, P.; Pourcelly, G., Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells, J. Membr. Sci., 447, 190-202, (2013) · doi:10.1016/j.memsci.2013.07.033
[33] Vastano, J. A.; Moser, R. D., Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow, J. Fluid Mech., 233, 83-118, (1991) · Zbl 0738.76033 · doi:10.1017/S002211209100040X
[34] Wulf, P.; Egbers, C.; Rath, H. J., Routes to chaos in wide-gap spherical Couette flow, Phys. Fluids, 11, 6, 1359-1372, (1999) · Zbl 1147.76539 · doi:10.1063/1.870001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.