×

Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation. (English) Zbl 1383.76068

Summary: Experimental and numerical studies have shown that, with sufficient nonlinearity, the theoretical capillary-wave power-law spectrum derived from the kinetic equation (KE) of weak turbulence theory can be realized. This is despite the fact that the KE is derived assuming an infinite domain with continuous wavenumber, while experiments and numerical simulations are conducted in realistic finite domains with discrete wavenumbers for which the KE theoretically allows no energy transfer. To understand this, we first analyse results from direct simulations of the primitive Euler equations to elucidate the role of nonlinear resonance broadening (NRB) in discrete turbulence. We define a quantitative measure of the NRB, explaining its dependence on the nonlinearity level and its effect on the properties of the obtained stationary power-law spectra. This inspires us to develop a new quasi-resonant kinetic equation (QKE) for discrete turbulence, which incorporates the mechanism of NRB, governed by a single parameter \(\kappa\) expressing the ratio of NRB and wavenumber discreteness. At \(\kappa=\kappa_{0}\approx 0.02\), the QKE recovers simultaneously the spectral slope \(\alpha_{0}=-17/4\) and the Kolmogorov constant \(C_{0}=6.97\) (corrected from the original derivation) of the theoretical continuous spectrum, which physically represents the upper bound of energy cascade capacity for the discrete turbulence. For \(\kappa<\kappa_{0}\), the obtained spectra represent those corresponding to a finite domain with insufficient nonlinearity, resulting in a steeper spectral slope \(\alpha<\alpha_{0}\) and reduced capacity of energy cascade \(C>C_{0}\). The physical insights from the QKE are corroborated by direct simulation results of the Euler equations.

MSC:

76B45 Capillarity (surface tension) for incompressible inviscid fluids
76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI

References:

[1] Annenkov, S. Y.; Shrira, V. I., Numerical modelling of water-wave evolution based on the Zakharov equation, J. Fluid Mech., 449, 341-371, (2001) · Zbl 1030.76009 · doi:10.1017/S0022112001006139
[2] Brazhnikov, M. Y.; Kolmakov, G. V.; Levchenko, A. A.; Mezhov-Deglin, L. P., Observation of capillary turbulence on the water surface in a wide range of frequencies, Europhys. Lett., 58, 4, 510, (2002) · doi:10.1209/epl/i2002-00425-9
[3] Connaughton, C.; Nazarenko, S.; Pushkarev, A., Discreteness and quasiresonances in weak turbulence of capillary waves, Phys. Rev. E, 63, 4, (2001)
[4] Deike, L.; Bacri, J.-C.; Falcon, E., Nonlinear waves on the surface of a fluid covered by an elastic sheet, J. Fluid Mech., 733, 394-413, (2013) · Zbl 1294.76009 · doi:10.1017/jfm.2013.379
[5] Deike, L.; Berhanu, M.; Falcon, E., Energy flux measurement from the dissipated energy in capillary wave turbulence, Phys. Rev. E, 89, 6, (2014)
[6] Deike, L.; Daniel, F.; Berhanu, M.; Falcon, E., Direct numerical simulations of capillary wave turbulence, Phys. Rev. Lett., 112, 1, (2014) · doi:10.1103/PhysRevLett.112.234501
[7] Denissenko, P.; Lukaschuk, S.; Nazarenko, S., Gravity wave turbulence in a laboratory flume, Phys. Rev. Lett., 99, 1, (2007) · doi:10.1103/PhysRevLett.99.014501
[8] Dyachenko, S.; Newell, A. C.; Pushkarev, A.; Zakharov, V. E., Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Physica D, 57, 1, 96-160, (1992) · Zbl 0767.35082
[9] Falcon, E.; Laroche, C.; Fauve, S., Observation of gravity – capillary wave turbulence, Phys. Rev. Lett., 98, 9, 94503, (2007) · doi:10.1103/PhysRevLett.98.094503
[10] Galtier, S.; Nazarenko, S. V.; Newell, A. C.; Pouquet, A., Anisotropic turbulence of shear-Alfvén waves, Astrophys. J. Lett., 564, 1, L49, (2002) · doi:10.1086/338791
[11] Kartashova, E. A., Partitioning of ensembles of weakly interacting dispersing waves in resonators into disjoint classes, Physica D, 46, 1, 43-56, (1990) · Zbl 0721.35057
[12] Lighthill, M. J., An Introduction to Fourier Analysis and Generalised Functions, (1958), Cambridge University Press · Zbl 0078.11203 · doi:10.1017/CBO9781139171427
[13] Lvov, V. S.; Nazarenko, S., Discrete and mesoscopic regimes of finite-size wave turbulence, Phys. Rev. E, 82, 5, (2010)
[14] Lvov, Y. V.; Polzin, K. L.; Tabak, E. G., Energy spectra of the ocean’s internal wave field: theory and observations, Phys. Rev. Lett., 92, 12, (2004) · doi:10.1103/PhysRevLett.92.128501
[15] Nazarenko, S., Sandpile behaviour in discrete water-wave turbulence, J. Stat. Mech., 2006, 2, (2006)
[16] Nazarenko, S.2011Wave Turbulence, vol. 825. Springer Science and Business Media. doi:10.1007/978-3-642-15942-8 · Zbl 1220.76006
[17] Newell, A. C.; Rumpf, B., Wave turbulence, Annu. Rev. Fluid Mech., 43, 59-78, (2011) · Zbl 1299.76006 · doi:10.1146/annurev-fluid-122109-160807
[18] Pan, Y.2016 Understanding of weak turbulence of capillary waves. PhD thesis, Massachusetts Institute of Technology.
[19] Pan, Y.; Yue, D. K. P., Direct numerical investigation of turbulence of capillary waves, Phys. Rev. Lett., 113, 9, (2014) · doi:10.1103/PhysRevLett.113.094501
[20] Pan, Y.; Yue, D. K. P., Decaying capillary wave turbulence under broad-scale dissipation, J. Fluid Mech., 780, R1, (2015) · Zbl 1382.76136 · doi:10.1017/jfm.2015.487
[21] Piscopia, R.; Polnikov, V.; Degirolamo, P.; Magnaldi, S., Validation of the three-wave quasi-kinetic approximation for the spectral evolution in shallow water, Ocean Engng, 30, 5, 579-599, (2003) · doi:10.1016/S0029-8018(02)00058-6
[22] Polnikov, V. G.; Manenti, S., Study of relative roles of nonlinearity and depth refraction in wave spectrum evolution in shallow water, Engng Appl. Comput. Fluid Mech., 3, 1, 42-55, (2009)
[23] Pushkarev, A.; Resio, D.; Zakharov, V., Weak turbulent approach to the wind-generated gravity sea waves, Physica D, 184, 1, 29-63, (2003) · Zbl 1098.76519 · doi:10.1016/S0167-2789(03)00212-4
[24] Pushkarev, A. N.; Zakharov, V. E., Turbulence of capillary waves – theory and numerical simulation, Phys. Rev. Lett., 76, 18, 3320-3323, (1996) · doi:10.1103/PhysRevLett.76.3320
[25] Pushkarev, A. N.; Zakharov, V. E., Physica D, 135, 1, 98-116, (2000) · Zbl 0960.76039 · doi:10.1016/S0167-2789(99)00069-X
[26] Wright, W. B.; Budakian, R.; Putterman, S. J., Diffusing light photography of fully developed isotropic ripple turbulence, Phys. Rev. Lett., 76, 24, 4528-4531, (1996) · doi:10.1103/PhysRevLett.76.4528
[27] Xia, H.; Shats, M.; Punzmann, H., Modulation instability and capillary wave turbulence, Europhys. Lett., 91, 1, 14002, (2010) · doi:10.1209/0295-5075/91/14002
[28] Zakharov, V. E., Energy balance in a wind-driven sea, Phys. Scr., 2010, T142, (2010)
[29] Zakharov, V. E.; Filonenko, N. N., The energy spectrum for stochastic oscillations of a fluid surface, Dokl. Akad. Nauk SSSR, 170, 1292-1295, (1966)
[30] Zakharov, V. E.; Filonenko, N. N., Weak turbulence of capillary waves, J. Appl. Mech. Tech. Phys., 8, 37-40, (1967) · doi:10.1007/BF00915178
[31] Zakharov, V. E., L’Vov, V. S. & Falkovich, G.1992Kolmogorov Spectra of Turbulence 1. Wave Turbulence, vol. 1, p. 275. Springer, ISBN: 3-540-54533-6. doi:10.1007/978-3-642-50052-7 · Zbl 0786.76002
[32] Zaslavskii, M. M.; Polnikov, V. G., Three-wave quasi-kinetic approximation in the problem of the evolution of a spectrum of nonlinear gravity waves at small depths, Izv. Atmos. Ocean. Phys., 34, 609-616, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.