×

Geometrically nonlinear dynamic analysis of functionally graded thick hollow cylinders using total Lagrangian MLPG method. (English) Zbl 1383.74010

Summary: In this article, geometrically nonlinear transient analysis based on the meshless local Petrov-Galerkin method (MLPG) is presented for functionally graded material thick hollow cylinders with infinite length subjected to a mechanical shock loading. The cylinder is assumed to be axisymmetric and in plane strain conditions. The mechanical properties of functionally graded cylinder are assumed to vary across the thickness. In MLPG analysis, the total Lagrangian formulation, radial base function, and Heaviside test function are used for approximation of displacement field in the weak form of the equation of motion. The system nonlinear equations are solved by Newmark finite difference and Newton-Raphson iteration methods. The time history of the radial displacement and stress for various values of the power law exponents, radii and thicknesses are investigated. The effects of different loading types and also the duration of loading on the dynamic behaviors of displacement and stress fields are obtained and discussed in details. Moreover, the obtained results from nonlinear analysis are compared with those obtained from linear analysis.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
Full Text: DOI

References:

[1] Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials. IOM Communications Ltd, London
[2] Birman V, Byrd LW (2007) Modeling and analysis of functionally graded materials and structures. Appl Mech Rev 60:195-216 · doi:10.1115/1.2777164
[3] Alwar RS, Reddy BS (1979) Large deflection static and dynamic analysis of isotropic and orthotropic annular plates. Int J Non-Linear Mech 14:347-359 · Zbl 0427.73034 · doi:10.1016/0020-7462(79)90008-8
[4] Reddy JN, Huang CL (1981) Nonlinear axisymmetric bending of annular plates with varying thickness. Int J Solids Struct 17:811-825 · Zbl 0454.73065 · doi:10.1016/0020-7683(81)90090-1
[5] Dumir PC (1988) Large deflection axisymmetric analysis of orthotropic annular plates on elastic foundations. Int J Solids Struct 24:777-787 · doi:10.1016/0020-7683(88)90047-9
[6] Srinivasan RS, Ramachandra LS (1989) Large deflection analysis of bimodulus annular and circular plates using finite elements. Comput Struct 31:681-691 · Zbl 0685.73022 · doi:10.1016/0045-7949(89)90202-2
[7] Shiue F-C (1989) Geometrically nonlinear analysis for an elastic body by the boundary element method. Retrospective theses and dissertations, Iowa State University · Zbl 1356.74098
[8] Shiue, F-C; Brebbia, CA (ed.); etal., Application of sub-element technique for improving the interior displacement and stress calculations by using the boundary element method, 1005-1013 (1991), Netherlands · doi:10.1007/978-94-011-3696-9_80
[9] Woo J, Meguid SA (2001) Nonlinear analysis of functionally graded plates and shallow shells. Int J Solids Struct 38:7409-7421 · Zbl 1010.74034 · doi:10.1016/S0020-7683(01)00048-8
[10] Reddy, JN; Arciniega, RA; Motasoares, CA (ed.); etal., Nonlinear analysis of composite and FGM shells using tensor-based shell finite elements, 31-32 (2006), Netherlands · doi:10.1007/1-4020-5370-3_31
[11] Arciniega RA, Reddy JN (2007) Large deformation analysis of functionally graded shells. Int J Solids Struct 44:2036-2052 · Zbl 1108.74038 · doi:10.1016/j.ijsolstr.2006.08.035
[12] Owatsiriwong A, Park KH (2008) A BEM formulation for transient dynamic elastoplastic analysis via particular integrals. Int J Solids Struct 45:2561-2582 · Zbl 1169.74641 · doi:10.1016/j.ijsolstr.2007.12.009
[13] Zhao X, Liew KM (2009) Geometrically nonlinear analysis of functionally graded shells. Int J Mech Sci 51:131-144 · Zbl 1264.74153 · doi:10.1016/j.ijmecsci.2008.12.004
[14] Sepahi O, Forouzan MR, Malekzadeh P (2010) Large deflection analysis of thermo-mechanical loaded annular FGM plates on nonlinear elastic foundation via DQM. Compos Struct 92:2369-2378 · doi:10.1016/j.compstruct.2010.03.011
[15] Ke L-L, Yang J, Kitipornchai S (2010) An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45:743-752 · Zbl 1258.74104 · doi:10.1007/s11012-009-9276-1
[16] Zhang W, Hao Y, Guo X (2012) Complicated nonlinear responses of a simply supported FGM rectangular plate under combined parametric and external excitations. Meccanica 47:985-1014 · Zbl 1284.74048 · doi:10.1007/s11012-011-9491-4
[17] Zhang W, Hao YX, Yang J (2012) Nonlinear dynamics of FGM circular cylindrical shell with clamped-clamped edges. Sci Technol 94:1075-1086
[18] Akinola AP, Fadodun OO, Olokuntoye BA (2012) Large deformation of transversely isotropic elastic thin circular disk in rotation. Int J Basic Appl Sci 12:22-26
[19] Upadhyay AK, Shukla KK (2013) Geometrically nonlinear static and dynamic analysis of functionally graded skew plates. Commun Nonlinear Sci Numer Simul 18:2252-2279 · Zbl 1321.74043 · doi:10.1016/j.cnsns.2012.12.034
[20] Arefi M (2013) Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder. Acta Mech 224:2771-2783 · Zbl 1336.74024 · doi:10.1007/s00707-013-0888-0
[21] Dong L, Hao Y, Wang J, Yang L (2013) Nonlinear vibration of functionally graded material cylindrical shell based on Reddy’s third-order plates and shells theory. Adv Mater Res 625:18-24 · doi:10.4028/www.scientific.net/AMR.625.18
[22] Panda SK, Mahapatra TR (2014) Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading. Meccanica 49:191-213 · Zbl 1347.74088 · doi:10.1007/s11012-013-9785-9
[23] Zhang A, Ming F, Cao X (2014) Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225:253-275 · Zbl 1401.74292 · doi:10.1007/s00707-013-0938-7
[24] Borboni A, De Santis D (2014) Large deflection of a non-linear, elastic, asymmetric Ludwick cantilever beam subjected to horizontal force, vertical force and bending torque at the free end. Meccanica 49:1327-1336 · Zbl 1333.74050
[25] Enshaeian A, Rofooei FR (2014) Geometrically nonlinear rectangular simply supported plates subjected to a moving mass. Acta Mech 608:595-608 · Zbl 1401.74182 · doi:10.1007/s00707-013-0983-2
[26] Shegokar NL, Lal A (2014) Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded materials beam subjected to thermo-piezoelectric loadings with material uncertainties. Meccanica 49:1039-1068 · Zbl 1344.74058 · doi:10.1007/s11012-013-9852-2
[27] Atlut SN, Zhu TL (1998) A new MLPG approach to nonlinear problems in computer modeling and simulation. Comput Model Simul Eng 3:187-196
[28] Sladek J, Stanak P, Han Z et al (2013) Applications of the MLPG method in engineering & sciences : a review. Tech Sci Press 92:423-475
[29] Xiong, YB; Long, SY; Hu, DA; Li, GY; Liu, GR (ed.); Tan, VBC (ed.); Han, X. (ed.), An application of the local petrov-galerkin method in solving geometrically nonlinear problems, 1509-1514 (2006), Netherlands · doi:10.1007/978-1-4020-3953-9_76
[30] Xiong, YB; Long, SY; Liu, KY; Li, GY; Liu, GR (ed.); Tan, VBC (ed.); Han, X. (ed.), A meshless local Petrov-Galerkin method for elasto-plastic problems, 1477-1478 (2006), Netherlands · doi:10.1007/978-1-4020-3953-9_72
[31] Zhang X, Yao Z, Zhang Z (2006) Application of MLPG in large deformation analysis. Acta Mech Sin 22:331-340 · Zbl 1202.74206 · doi:10.1007/s10409-006-0017-6
[32] Soares JD (2010) A time-domain meshless local Petrov-Galerkin formulation for the dynamic analysis of nonlinear porous media. Tech Sci Press 66:227-248 · Zbl 1231.76164
[33] Soares JD, Sladek J, Sladek V (2009) Dynamic analysis by meshless local Petrov-Galerkin formulations considering a time-marching scheme based on implicit Green’s functions. Comput Model Eng Sci 50:115-140 · Zbl 1231.74056
[34] Soares JD, Sladek J, Sladek V (2010) Non-linear dynamic analyses by meshless local Petrov-Galerkin formulations. Int J Numer Eng 82:1687-1699 · Zbl 1183.74369
[35] Wang D, Sun YUE (2011) A Galerkin meshfree method with stabilized conforming nodal integration for geometrically nonlinear analysis of shear deformable plates. Int J Comput Methods 8:685-703 · Zbl 1245.74088 · doi:10.1142/S0219876211002769
[36] Moosavi MR, Khelil A (2015) Isogeometric meshless finite volume method in nonlinear elasticity. Acta Mech 226:123-135 · Zbl 1326.74126 · doi:10.1007/s00707-014-1166-5
[37] Ghadiri Rad MH, Shahabian F, Hosseini SM (2014) A meshless local Petrov-Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping. Acta Mech. doi:10.1007/s00707-014-1266-2 · Zbl 1329.74148 · doi:10.1007/s00707-014-1266-2
[38] Ghadiri Rad MH, Shahabian F, Hosseini SM (2015) Geometrically nonlinear elastodynamic analysis of hyper-elastic neo-Hooken FG cylinder subjected to shock loading using MLPG method. Eng Anal Bound Elem 50:83-96 · Zbl 1403.74286 · doi:10.1016/j.enganabound.2014.08.002
[39] Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, New York
[40] Moussavinezhad SM, Shahabian F, Hosseini SM (2013) Two-dimensional elastic wave propagation analysis in finite length FG thick hollow cylinders with 2D nonlinear grading patterns using MLPG method. Tech Sci Press 1:1-27 · Zbl 1356.74098
[41] Santos H, Soares CMM, Soares CAM, Reddy JN (2005) A semi-analytical finite element model for the analysis of laminated 3D axisymmetric shells Bending, free vibration and buckling. Compos Struct 71:273-281 · doi:10.1016/j.compstruct.2005.09.006
[42] Zhu Y, Luo XY, Ogden RW (2010) Nonlinear axisymmetric deformations of an elastic tube under external pressure. Eur J Mech/A Solids 29:216-229 · Zbl 1478.74011 · doi:10.1016/j.euromechsol.2009.10.004
[43] Bathet KJ, Bolourchit S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Eng 14:961-986 · Zbl 0404.73070 · doi:10.1002/nme.1620140703
[44] Reddy JN (2004) An introduction to nonlinear finite element analysis. Oxford University Press, New York · Zbl 1057.65087 · doi:10.1093/acprof:oso/9780198525295.001.0001
[45] Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9:353-386 · Zbl 0304.73060 · doi:10.1002/nme.1620090207
[46] Hosseini SM, Akhlaghi M, Shakeri M (2007) Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials. Eng Comput 24:288-303 · Zbl 1198.74034 · doi:10.1108/02644400710735043
[47] Shariyat M, Nikkhah M, Kazemi R (2011) Exact and numerical elastodynamic solutions for thick-walled functionally graded cylinders subjected to pressure shocks. Int J Press Vessel Pip 88:75-87 · doi:10.1016/j.ijpvp.2011.01.005
[48] Moradi-dastjerdi R, Foroutan M, Pourasghar A (2013) Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method. J Mater Des 44:256-266 · Zbl 1344.74025 · doi:10.1016/j.matdes.2012.07.069
[49] Upadhyay AK, Pandey R, Shukla KK (2011) Nonlinear dynamic response of laminated composite plates subjected to pulse loading. Commun Nonlinear Sci Numer Simul 16:4530-4544 · Zbl 1392.74046 · doi:10.1016/j.cnsns.2011.03.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.