×

Nonparametric relative error regression for spatial random variables. (English) Zbl 1383.62107

Let \(Z=(X,Y)\) be a \(\mathbb{R}^d\times\mathbb{R}\)-valued random vector with \(Y>0\). The mean squared relative error \(E((Y-t)^2/Y^2\mid X=x)\) with respect to \(t\) is minimized by \(\vartheta(x)= E(Y^{-1}\mid X=x)/E(Y^{-2}\mid X=x)\), provided the integrals exist. Let \(Z_i\), \(i\in\mathcal{I}_n\subset\mathbb{Z}^N\) be a strictly stationary random field, consisting of copies of \(Z\). A natural estimate of \(\vartheta(x)\) is the relative error regression kernel estimate \(\tilde\vartheta_n(x)= \sum_{i\in\mathcal{I}_n}Y_i^{-1}K(h^{-1}(x-X_i))/\sum_{i\in\mathcal{I}_n}Y_i^{-2}K(h^{-1}(x-X_i))\), where \(K\) is a kernel and \(h\) a bandwidth.
Under suitable regularity conditions, the authors establish uniform convergence \(\sup_{x\in S}|\tilde\vartheta_n(x)-\vartheta(x)|\to 0\) a.s. over a compact set \(S\) as well as pointwise asymptotic normality of \(\tilde\vartheta_n(x)-\vartheta(x)\), properly standardized. Confidence intervals of \(\vartheta(x)\) are derived from the asymptotic normality.
A finite sample comparison with the classical kernel regression estimator is in favor of the relative error regression estimate when there are outliers in the data. An application to real data completes the paper.

MSC:

62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
62M30 Inference from spatial processes
62M40 Random fields; image analysis
62G15 Nonparametric tolerance and confidence regions
Full Text: DOI

References:

[1] Bernhard FA, Stahlecker P (2003) Relative squared error prediction in the generalized linear regression model. Stat Pap 44:107-115 · Zbl 1026.62072 · doi:10.1007/s00362-002-0136-5
[2] Biau G, Cadre B (2004) Nonparametric spatial prediction. Stat Inference Stoch Process 7:327-349 · Zbl 1125.62317 · doi:10.1023/B:SISP.0000049116.23705.88
[3] Bobbia M, Misiti M, Misiti Y, Poggi JM, Portier B (2015) Spatial outlier detection in the PM10 monitoring network of Normandy. Atmos Pollut Res 6:476-483 · doi:10.5094/APR.2015.053
[4] Carbon M, Tran LT, Wu B (1997) Kernel density estimation for random fields. Stat Probab Lett 36:115-125 · Zbl 0892.62017 · doi:10.1016/S0167-7152(97)00054-0
[5] Carbon M, Francq C, Tran LT (2007) Kernel regression estimation for random fields. J Stat Plan Inference 137:778-798 · Zbl 1104.62105 · doi:10.1016/j.jspi.2006.06.008
[6] Cressie NA (1993) Statistics for spatial data. Wiley, New York
[7] Dabo-Niang S, Thiam B (2010) Robust quantile estimation and prediction for spatial processes. Stat Probab Lett 80:1447-1458 · Zbl 1193.62165 · doi:10.1016/j.spl.2010.05.012
[8] Dabo-Niang S, Yao AF (2007) Kernel regression estimation for continuous spatial processes. Math Methods Stat 16:1-20 · Zbl 1140.62071 · doi:10.3103/S1066530707040023
[9] Dabo-Niang S, Ould-Abdi S, Ould-Abdi A, Diop A (2014) Consistency of a nonparametric conditional mode estimator for random fields. Stat Methods Appl 23:1-39 · Zbl 1332.62155 · doi:10.1007/s10260-013-0239-2
[10] Dabo-Niang S, Yao A, Pischedda L, Cuny P, Gilbert F (2009) Spatial kernel mode estimation for functional random, with application to bioturbation problem. Stoch Environ Res Risk Assess 24:487-497 · Zbl 1462.62700 · doi:10.1007/s00477-009-0339-6
[11] Diggle P, Ribeiro PJ (2007) Model-based geostatistics. Springer, New York · Zbl 1132.86002
[12] Doukhan P (1994) Mixing: properties and examples. Lecture Notes in Statistics, vol 85. Springer- Verlag, New York · Zbl 0801.60027
[13] El Machkouri M, Stoica R (2010) Asymptotic normality of kernel estimates in a regression model for random fields. J Nonparametric Stat 22:955-971 · Zbl 1203.62065 · doi:10.1080/10485250903505893
[14] Filzmoser P, Ruiz-Gazen A, Thomas-Agnan C (2014) Identification of local multivariate outliers. Stat Pap 55:29-47 · Zbl 1416.62297 · doi:10.1007/s00362-013-0524-z
[15] Gheriballah A, Laksaci A, Rouane R (2010) Robust nonparametric estimation for spatial regression. J Stat Plan Inference 140:1656-1670 · Zbl 1184.62064 · doi:10.1016/j.jspi.2010.01.042
[16] Guyon X (1987) Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. In: Proceedings of the sixth Franco-Belgian meeting of statisticians
[17] Hallin M, Lu Z, Yu K (2009) Local linear spatial quantile regression. Bernoulli 15:659-686 · Zbl 1452.62283 · doi:10.3150/08-BEJ168
[18] Jones MC, Park H, Shinb K, Vines SK, Jeong SO (2008) Relative error prediction via kernel regression smoothers. J Stat Plan Inference 138:2887-2898 · Zbl 1140.62031 · doi:10.1016/j.jspi.2007.11.001
[19] Li J, Tran LT (2009) Nonparametric estimation of conditional expectation. J Stat Plan Inference 139:164-175 · Zbl 1149.62078 · doi:10.1016/j.jspi.2008.04.023
[20] Liu X, Lu CT, Chen F (2010) Spatial outlier detection: random walk based approaches. In: Proceedings of the 18th ACM SIGSPATIAL international conference on advances in geographic information systems (ACM GIS), San Jose, CA · Zbl 1058.62079
[21] Lu Z, Chen X (2004) Spatial kernel regression: weak consistency. Stat Probab Lett 68:125-136 · Zbl 1058.62079 · doi:10.1016/j.spl.2003.08.014
[22] Martnez J, Saavedra J, Garca-Nieto PJ, Pieiro JI, Iglesias C, Taboada J, Sancho J, Pastor J (2014) Air quality parameters outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Appl Math Comput 241:1-10 · Zbl 1334.62201 · doi:10.1016/j.amc.2014.05.004
[23] Narula SC, Wellington JF (1977) Prediction, linear regression and the minimum sum of relative errors. Technometrics 19:185-190 · Zbl 0377.62054 · doi:10.1080/00401706.1977.10489526
[24] Omidi M, Mohammadzadeh M (2015) A new method to build spatio-temporal covariance functions: analysis of ozone data. Stat Pap. doi:10.1007/s00362-015-0674-2 · Zbl 1373.62562
[25] Robinson PM (2011) Asymptotic theory for nonparametric regression with spatial data. J Econom 165:5-19 · Zbl 1441.62853 · doi:10.1016/j.jeconom.2011.05.002
[26] Shen VY, Yu T, Thebaut SM (1985) Identifying error-prone softwarean empirical study. IEEE Trans Softw Eng 11:317-324 · doi:10.1109/TSE.1985.232222
[27] Tran LT (1990) Kernel density estimation on random fields. J Multivar Anal 34:37-53 · Zbl 0709.62085 · doi:10.1016/0047-259X(90)90059-Q
[28] Volker S (2014) Stochastic geometry, spatial statistics and random fields: models and algorithms. Lecture Notes in Mathematics, vol 2120. Springer, New York
[29] Xu R, Wang J \[(2008) L_1\] L1- estimation for spatial nonparametric regression. J Nonparametric Stat 20:523-537 · Zbl 1145.62034 · doi:10.1080/10485250801976717
[30] Yang Y, Ye F (2013) General relative error criterion and M-estimation. Front Math China 8:695-715 · Zbl 1273.62172 · doi:10.1007/s11464-013-0286-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.