×

Efimov spaces and the separable quotient problem for spaces \(C_{p}(K)\). (English) Zbl 1383.46002

The famous separable quotient problem asks whether every infinite-dimensional Banach space admits an infinite-dimensional separable quotient. More generally, the same question can be asked for bigger classes of locally convex spaces instead of the class of Banach spaces. In the recent article [Proc. Am. Math. Soc. 145, No. 9, 3829–3841 (2017; Zbl 1383.46003)], J. Kąkol and S. A. Saxon gave a full characterisation of the completely regular Hausdorff spaces for which the space \(C_p(X)\) of continuous functions on \(X\) equipped with the topology of pointwise convergence admits a separable algebra quotient.
Motivated by the fact that the Stone-Čech compactification \(\beta\mathbb{N}\) of the natural numbers fails these conditions, the current article is devoted to the question of when the space \(C_p(K)\) for an infinite compact space \(K\) admits an infinite-dimensional separable quotient. The main result, giving a sufficient condition for the existence of an infinite-dimensional separable quotient in \(C_p(X)\), reads as follows:
Let \(X\) be a completely regular space with a sequence \((K_n)\) of nonempty compact subsets such that, for each \(n\geq 1\), the set \(K_n\) contains two disjoint subsets homeomorphic to \(K_{n+1}\). Then \(C_p(X)\) has an infinite-dimensional separable quotient. Consequently, if \(K\) is a compact space which contains a copy of \(\beta\mathbb{N}\), then \(C_p(X)\) admits an infinite-dimensional separable quotient.
As corollaries to this result, the authors provide a number of sufficient conditions on \(X\) which ensure that \(C_p(X)\) has such a separable quotient. Moreover, the connection of this result with Efimov spaces is discussed.
The article closes with a list of remarks, examples and problems.

MSC:

46A08 Barrelled spaces, bornological spaces
54C35 Function spaces in general topology
46E10 Topological linear spaces of continuous, differentiable or analytic functions

Citations:

Zbl 1383.46003
Full Text: DOI

References:

[1] Arkhangel’skii, A. V., Topological Function Spaces, Math. Appl. (1992), Kluwer · Zbl 0601.54001
[2] Brenner, G., A simple construction for rigid and weakly homogeneous Boolean algebras answering a question of Rubin, Proc. Amer. Math. Soc., 87, 601-606 (1983) · Zbl 0524.06021
[3] Cembranos, P., \(C(K, E)\) contains a complemented copy of \(c_0\), Proc. Amer. Math. Soc., 91, 556-558 (1984) · Zbl 0604.46040
[4] Dales, H. G.; Dashiell, F. K.; Lau, M.; Strauss, D., Banach Spaces of Continuous Functions as Dual Spaces, CMS Books Math. (2016) · Zbl 1368.46003
[5] De la Vega, R., Homogeneity Properties on Compact Spaces (2005), University of Wisconsin-Madison, Dissertation
[6] De la Vega, R., Basic homogeneity properties in the class of zero-dimensional compact spaces, Topology Appl., 155, 225-232 (2008) · Zbl 1135.54022
[7] Dow, A., Efimov spaces and the splitting number, Topology Proc., 29, 105-113 (2005) · Zbl 1116.54022
[8] Dow, A., Compact sets without converging sequences in the random real model, Acta Math. Univ. Comenian., 76, 161-171 (2007) · Zbl 1164.54006
[9] Dow, A.; Shelah, S., An Efimov space from Martin’s axiom, Houston J. Math., 39, 1423-1435 (2013) · Zbl 1284.54008
[10] Efimov, B., Subspaces of dyadic bicompacta, Dokl. Akad. Nauk USSR. Dokl. Akad. Nauk USSR, Sov. Math., Dokl., 10, 453-456 (1969), (in Russian); English transl. in · Zbl 0191.21002
[11] Engelking, R., General Topology (1989), Heldermann Verlag: Heldermann Verlag Berlin · Zbl 0684.54001
[12] Fajardo, R., Quotients of indecomposable Banach spaces of continuous functions, Studia Math., 212, 259-283 (2012) · Zbl 1270.46020
[13] Fedorcuk, V. V., A bicompactum whose infinite closed subsets are all n-dimensional, Math. USSR, Sb., 25, 37-57 (1976) · Zbl 0327.54031
[14] Fedorcuk, V. V., Completely closed mappings, and the consistency of certain general topology theorems with the axioms of set theory, Math. USSR, Sb., 28, 3-33 (1976)
[15] Gabriyelyan, S.; Ka̧kol, J.; Kubiś, W.; Marciszewski, M., Networks for the weak topology of Banach and Fréchet spaces, J. Math. Anal. Appl., 142, 1183-1199 (2015) · Zbl 1410.54018
[16] Geschke, S., The coinitialities of Efimov spaces, (Babinkostova, L.; etal., Set Theory and Its Applications. Set Theory and Its Applications, Contemp. Math., vol. 533 (2011)), 259-265 · Zbl 1244.03132
[17] Gillman, M.; Jerison, M., Rings of Continuous Functions, Grad. Texts in Math., vol. 43 (1976), Springer: Springer Berlin · Zbl 0327.46040
[18] Hart, P., Efimov’s problem, (Pearl, E., Problems in Topology II (2007)), 171-177
[19] Johnson, W. B.; Rosenthal, H. P., On \(weak^⁎\)-basic sequences and their applications to the study of Banach spaces, Studia Math., 43, 166-168 (1975)
[20] Ka̧kol, J.; Saxon, S. A., Separable quotients in \(C_c(X), C_p(X)\) and their duals, Proc. Amer. Math. Soc., 145, 3829-3841 (2017) · Zbl 1383.46003
[21] Ka̧kol, J.; Śliwa, W., Remarks concerning the separable quotient problem, Note Mat., 13, 277-282 (1993) · Zbl 0878.46012
[22] Ka̧kol, J.; Saxon, S. A.; Tood, A., Barrelled spaces with(out) separable quotients, Bull. Aust. Math. Soc., 90, 295-303 (2014) · Zbl 1306.46002
[23] Kalenda, O., A characterization of Valdivia compact spaces, Collect. Math., 51, 59-81 (2000) · Zbl 0949.46004
[24] Lacey, E., Separable quotients of Banach spaces, An. Acad. Brasil. Ciênc., 44, 185-189 (1972) · Zbl 0259.46017
[25] Lacey, E.; Morris, P., On spaces of the type A(K) and their duals, Proc. Amer. Math. Soc., 23, 151-157 (1969) · Zbl 0184.34404
[26] Marciszewski, W.; Plebanek, G., On Borel structures in the Banach space \(C(\beta \omega)\), J. Funct. Anal., 266, 4026-4036 (2014) · Zbl 1304.46021
[27] Marciszewski, W.; Pol, R., On Banach spaces whose norm-open sets are \(F_\sigma \)-sets in the weak topology, J. Math. Anal. Appl., 350, 708-722 (2009) · Zbl 1167.46311
[28] Mcaloon, K., Consistency results about ordinal definability, Ann. Math. Logic, 2, 449-467 (1971) · Zbl 0225.02044
[29] Mujica, J., Separable quotients of Banach spaces, Rev. Mat. Complut., 10, 299-330 (1997) · Zbl 0908.46007
[30] Rosenthal, H. P., On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from \(L_p(\mu)\) to \(L_r(\nu)\), J. Funct. Anal., 4, 176-214 (1969) · Zbl 0185.20303
[31] Saxon, S. A.; Wilansky, A., The equivalence of some Banach space problems, Colloq. Math., 37, 217-226 (1977) · Zbl 0373.46027
[32] Shapirovsky, V., On mappings onto Tychonoff cubes, Uspekhi Mat. Nauk, 35, 122-130 (1980), (in Russian) · Zbl 0454.54013
[33] Śliwa, W., The separable quotient problem and the strongly normal sequences, J. Math. Soc. Japan, 64, 387-397 (2012) · Zbl 1253.46025
[34] Śliwa, W.; Wójtowicz, M., Separable quotients of locally convex spaces, Bull. Pol. Acad. Sci. Math., 43, 175-185 (1995) · Zbl 0836.46001
[35] Talagrand, M., Un nouvean \(C(K)\) qui possede la propriete de Grothendieck, Israel J. Math., 37, 181-191 (1980) · Zbl 0459.46018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.