×

Analytical solution to the nonlinear singular boundary value problem arising in biology. (English) Zbl 1383.34041

From the summary and introduction: Consider the two-point boundary value problem of the type \[ \begin{gathered} y''(x)+ ny'(x)+{m\over x} y'(x)= f(x,y(x)),\quad 0< x\leq 1,\;m>0,\;n\in\mathbb{R},\\ y'(0)= 0,\quad Ay(1)+ By'(1)= C.\end{gathered} \] As a first step, we present a constructive proof of the existence and uniqueness of solution. Then, we apply the Picard iterative sequence by constructing an integral equation whose Green’s function is not negative. The convergence of this iterative sequence is then controlled by an embedded parameter so that it tends to the unique solution.

MSC:

34B16 Singular nonlinear boundary value problems for ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations

References:

[1] Garner, J, Shivaji, R: Diffusion problems with a mixed nonlinear boundary condition. J. Math. Anal. Appl. 148(2), 422-430 (1990) · Zbl 0712.34029 · doi:10.1016/0022-247X(90)90010-D
[2] Adam, JA: A simplified mathematical model of tumor growth. Math. Biosci. 81(2), 229-244 (1986) · Zbl 0601.92007 · doi:10.1016/0025-5564(86)90119-7
[3] Adam, JA: A mathematical model of tumor growth. II. Effects of geometry and spatial nonuniformity on stability. Math. Biosci. 86(2), 183-211 (1987) · Zbl 0634.92002 · doi:10.1016/0025-5564(87)90010-1
[4] Adam, JA, Maggelakis, S: Mathematical models of tumor growth. IV. Effects of a necrotic core. Math. Biosci. 97(1), 121-136 (1989) · Zbl 0682.92004 · doi:10.1016/0025-5564(89)90045-X
[5] Burton, AC: Rate of growth of solid tumours as a problem of diffusion. Growth 30(2), 157-176 (1966)
[6] Greenspan, H: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51(4), 317-340 (1972) · Zbl 0257.92001 · doi:10.1002/sapm1972514317
[7] Asaithambi, N, Garner, J: Pointwise solution bounds for a class of singular diffusion problems in physiology. Appl. Math. Comput. 30(3), 215-222 (1989) · Zbl 0669.92004
[8] McElwain, D: A re-examination of oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics. J. Theor. Biol. 71(2), 255-263 (1978) · doi:10.1016/0022-5193(78)90270-9
[9] Flesch, U: The distribution of heat sources in the human head: a theoretical consideration. J. Theor. Biol. 54(2), 285-287 (1975) · doi:10.1016/S0022-5193(75)80131-7
[10] Gray, B: The distribution of heat sources in the human head - theoretical considerations. J. Theor. Biol. 82(3), 473-476 (1980) · doi:10.1016/0022-5193(80)90250-7
[11] Duggan, R, Goodman, A: Pointwise bounds for a nonlinear heat conduction model of the human head. Bull. Math. Biol. 48(2), 229-236 (1986) · Zbl 0585.92011 · doi:10.1007/BF02460025
[12] Gatica, J, Oliker, V, Waltman, P: Singular nonlinear boundary value problems for second-order ordinary differential equations. J. Differ. Equ. 79(1), 62-78 (1989) · Zbl 0685.34017 · doi:10.1016/0022-0396(89)90113-7
[13] Fink, A, Gatica, JA, Hernandez, GE, Waltman, P: Approximation of solutions of singular second order boundary value problems. SIAM J. Math. Anal. 22(2), 440-462 (1991) · Zbl 0722.34015 · doi:10.1137/0522029
[14] Baxley, JV: Some singular nonlinear boundary value problems. SIAM J. Math. Anal. 22(2), 463-479 (1991) · Zbl 0719.34038 · doi:10.1137/0522030
[15] Baxley, JV, Gersdorff, GS: Singular reaction-diffusion boundary value problems. J. Differ. Equ. 115(2), 441-457 (1995) · Zbl 0815.35019 · doi:10.1006/jdeq.1995.1022
[16] Wang, H, Li, Y: Existence and uniqueness of solutions to two point boundary value problems for ordinary differential equations. Z. Angew. Math. Phys. 47(3), 373-384 (1996) · Zbl 0862.34017 · doi:10.1007/BF00916644
[17] Tineo, A: On a class of singular boundary value problems which contains the boundary conditions. J. Differ. Equ. 113, 1-16 (1994) · Zbl 0810.34019 · doi:10.1006/jdeq.1994.1112
[18] Wang, J: On positive solutions of singular nonlinear two-point boundary value problems. J. Differ. Equ. 107(1), 163-174 (1994) · Zbl 0792.34023 · doi:10.1006/jdeq.1994.1007
[19] Ebaid, A: A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method. J. Comput. Appl. Math. 235(8), 1914-1924 (2011) · Zbl 1209.65077 · doi:10.1016/j.cam.2010.09.007
[20] Agarwal, RP, O’Regan, D: Nonlinear superlinear singular and nonsingular second order boundary value problems. J. Differ. Equ. 143(1), 60-95 (1998) · Zbl 0902.34015 · doi:10.1006/jdeq.1997.3353
[21] Jia, R, Shao, J: Existence and uniqueness of periodic solutions of second-order nonlinear differential equations. J. Inequal. Appl. 2013, 115 (2013) · Zbl 1286.34061 · doi:10.1186/1029-242X-2013-115
[22] Zhou, J: The existence and uniqueness of the solution for nonlinear elliptic equations in Hilbert spaces. J. Inequal. Appl. 2015, 250 (2015) · Zbl 1336.93177 · doi:10.1186/s13660-015-0764-7
[23] Agarwal, RP, O’Regan, D: An upper and lower solution approach for singular boundary value problems with sign changing non-linearities. Math. Methods Appl. Sci. 25(6), 491-506 (2002) · Zbl 1012.34019 · doi:10.1002/mma.300
[24] Kannan, R, O’Regan, D: Singular and nonsingular boundary value problems with sign changing nonlinearities. J. Inequal. Appl. 5, 621-637 (2000) · Zbl 0976.34017
[25] Lü, H, Bai, Z: Positive radial solutions of a singular elliptic equation with sign changing nonlinearities. Appl. Math. Lett. 19(6), 555-567 (2006) · Zbl 1147.34015 · doi:10.1016/j.aml.2005.08.002
[26] Ford, WF, Pennline, JA: Singular non-linear two-point boundary value problems: existence and uniqueness. Nonlinear Anal. 71(3), 1059-1072 (2009) · Zbl 1172.34015 · doi:10.1016/j.na.2008.11.045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.