×

Cluster Poisson varieties at infinity. (English) Zbl 1383.14018

Summary: A positive space is a space with a positive atlas, i.e., a collection of rational coordinate systems with subtraction free transition functions. The set of positive real points of a positive space is well defined. We define a tropical compactification of the latter. We show that it generalizes Thurston’s compactification of a Teichmüller space. A cluster Poisson variety, originally called cluster \({\mathcal X}\)-variety [the authors, Ann. Sci. Éc. Norm. Supér. (4) 42, No. 6, 865–930 (2009; Zbl 1180.53081)], is covered by a collection of coordinate tori \(({{\mathbb C}}^\ast)^n\), which form a positive atlas of a specific kind. We define a special completion \(\widehat{\mathcal X}\) of \({\mathcal X}\). It has a stratification whose strata are cluster Poisson varieties. The coordinate tori of \({\mathcal X}\) extend to coordinate affine spaces \({\mathbb A}^n\) in \(\widehat{\mathcal X}\). We define completions of Teichmüller spaces for decorated surfaces \({\mathbb S}\) with marked points at the boundary. The set of positive points of the special completion of the cluster Poisson variety \({\mathcal X}_{\mathrm{PGL} _2, {\mathbb S}}\) related to the Teichmüller theory on \({\mathbb S}\) [the authors, Publ. Math., Inst. Hautes Étud. Sci. 103, 1–211 (2006; Zbl 1099.14025)] is a part of the completion of the Teichmüller space (see Fig. 1 on the next page).

MSC:

14T05 Tropical geometry (MSC2010)
13F60 Cluster algebras
30F60 Teichmüller theory for Riemann surfaces

References:

[1] Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmuller theory. Publ. Math. IHES 103, 1-212 (2006). arXiv:math.AG/0311149 · Zbl 1099.14025
[2] Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. École Norm. Sup. 42, 865-929 (2009). arXiv:math.AG/0311245 · Zbl 1180.53081
[3] Fock, V.V., Goncharov, A.B.: Dual Teichmüller and lamination spaces. Handbook of Teichmüller theory. Vol. I, 647-684, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich. ArXiv:math.DG/0510312 (2007) · Zbl 1162.32009
[4] Fomin, S., Zelevinsky, A.: Cluster algebras: notes for the CDM-03 conference. arXiv:math/0311493 · Zbl 1119.05108
[5] Fomin, S., Zelevinsky, A.: Cluster algebras. I. J. Am. Math. Soc. 15(2), 497-529 (2002) · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[6] Fomin, S., Zelevinsky, A.: Cluster algebras. II. Inv. Math. 154(1), 63-121 (2003) · Zbl 1054.17024 · doi:10.1007/s00222-003-0302-y
[7] Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28(2), 119-144 (2002) · Zbl 1012.05012 · doi:10.1006/aama.2001.0770
[8] Goncharov, A.B.: Pentagon relation for the quantum dilogarithm and quantized \[{\cal M}^{\rm cyc}_{0,5}\] M0,5cyc. Progress in Math., vol. 265, pp. 415-428. Birkhäuser, Basel (2007) · Zbl 1139.81055
[9] Goncharov, A.B., Manin, YuI: Multiple zeta-motives and moduli spaces \[M_{0, n}\] M0,n. Compositio Math 140, 1-14 (2004). arXiv:math/0204102 · Zbl 1047.11063 · doi:10.1112/S0010437X03000125
[10] Lusztig G.: Total positivity in reductive groups. In: Lie Theory and Geometry: In honor of Bertram Kostant, Progress in Mathematics 123, pp. 531-568. Birkhäuser, Basel (1994) · Zbl 0845.20034
[11] Masur, H.: The extension of the Weil-Petersson metric to the boundary of Teichmuller space. Duke Math. J. 43(3), 623-635 (1976) · Zbl 0358.32017 · doi:10.1215/S0012-7094-76-04350-7
[12] Speyer, D., Williams, L.: The tropical totally positive. Grassmannian J. Algebr. Comb. 22(2), 189-210 (2005). arXiv:math/0312297 · Zbl 1094.14048 · doi:10.1007/s10801-005-2513-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.