×

Chimera states in two populations with heterogeneous phase-lag. (English) Zbl 1382.92224

Summary: The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally in various settings, for example, as an approximation to transmission delays, excitatory-inhibitory interactions, or as amplitude and phase responses of oscillators with electrical or mechanical coupling. We find that breaking the phase-lag symmetry results in a variety of states with uniform and non-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay state), chimera states with phase separation of 0 or \(\pi\) between populations, and states where both populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and even chaotic dynamics. Moreover, we identify the bifurcations through which chimeras emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully incoherent states when the phase-lags are near \(\pm \frac{\pi}{2}\) (cosine coupling). These findings elucidate previous experimental results involving a network of mechanical oscillators and provide further insight into the breakdown of synchrony in biological systems.{
©2016 American Institute of Physics}

MSC:

92D25 Population dynamics (general)
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models

References:

[1] Abrams, D. M.; Mirollo, R. E.; Strogatz, S. H.; Wiley, D. A., Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett., 101, 084103 (2008) · doi:10.1103/PhysRevLett.101.084103
[2] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 17, 174102 (2004) · doi:10.1103/PhysRevLett.93.174102
[3] Ashwin, P.; Bick, C.; Burylko, O., Isotropy of angular frequencies and weak chimeras with broken symmetry · Zbl 1383.34057
[4] Ashwin, P.; Burylko, O., Weak chimeras in minimal networks of coupled phase oscillators, Chaos, 25, 013106 (2015) · Zbl 1345.34052 · doi:10.1063/1.4905197
[5] Ashwin, P.; Swift, J. W., The dynamics of n weakly coupled identical oscillators, J. Nonlinear Sci., 2, 1, 69-108 (1992) · Zbl 0872.58049 · doi:10.1007/BF02429852
[6] Benettin, G.; Galgani, L.; Strelcyn, J. M., Kolmogorov entropy and numerical experiments, Phys. Rev. A, 14, 6, 2338-2345 (1976) · doi:10.1103/PhysRevA.14.2338
[7] Bick, C., Isotropy of angular frequencies and weak chimeras with broken symmetry · Zbl 1383.34057
[8] Bick, C.; Ashwin, P., Chaotic weak chimeras and their persistence in coupled populations of phase oscillators, Nonlinearity, 29, 5, 1468-1486 (2016) · Zbl 1355.37041 · doi:10.1088/0951-7715/29/5/1468
[9] Bick, C.; Martens, E. A., Controlling chimeras, New J. Phys., 17, 3, 033030 (2015) · Zbl 1452.34069 · doi:10.1088/1367-2630/17/3/033030
[10] Bick, C., Panaggio, M. J., and Martens, E. A., “ Chaotic mean field dynamics in phase oscillators with heterogeneous phase lags” (unpublished). · Zbl 1382.92224
[11] Buck, J.; Buck, E., Mechanism of rhythmic synchronous flashing of fireflies: Fireflies of Southeast Asia may use anticipatory time-measuring in synchronizing their flashing, Science, 159, 3821, 1319-1327 (1968) · doi:10.1126/science.159.3821.1319
[12] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 851-1112 (1993) · Zbl 1371.37001 · doi:10.1103/RevModPhys.65.851
[13] Danø, S.; Sørensen, P. G.; Hynne, F., Sustained oscillations in living cells, Nature, 402, 6759, 320-322 (1999) · doi:10.1038/46329
[14] Dörfler, F.; Bullo, F., Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50, 3, 1616-1642 (2012) · Zbl 1264.34105 · doi:10.1137/110851584
[15] Ghosh, A. K.; Chance, B.; Pye, E. K., Metabolic coupling and synchronization of NADH oscillations in yeast cell populations, Arch. Biochem. Biophys., 145, 1, 319-331 (1971) · doi:10.1016/0003-9861(71)90042-7
[16] Golubitsky, M.; Stewart, I., The Symmetry Perspective, 200 (2002) · Zbl 1031.37001
[17] Hagerstrom, A. M.; Murphy, T. E.; Roy, T.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental observation of chimeras in coupled-map lattices, Nat. Phys., 8, 8, 658-661 (2012) · doi:10.1038/nphys2372
[18] Hong, H.; Strogatz, S., Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett., 106, 5, 054102(1-4) (2011) · doi:10.1103/PhysRevLett.106.054102
[19] Kiss, I. Z.; Zhai, Y.; Hudson, J. L., Emerging coherence in a population of chemical oscillators, Science, 296, 5573, 1676-1678 (2002) · doi:10.1126/science.1070757
[20] Klinglmayr, J.; Kirst, C.; Bettstetter, C.; Timme, M., Guaranteeing global synchronization in networks with stochastic interactions, New J. Phys., 14, 7, 073031 (2012) · Zbl 1448.92031 · doi:10.1088/1367-2630/14/7/073031
[21] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 4, 380-385 (2002)
[22] Laing, C. R., Chimera states in heterogeneous networks, Chaos, 19, 1, 013113 (2009) · Zbl 1311.34080 · doi:10.1063/1.3068353
[23] Laing, C. R., Disorder-induced dynamics in a pair of coupled heterogeneous phase oscillator networks, Chaos, 22, 4, 043104 (2012) · Zbl 1319.34057 · doi:10.1063/1.4758814
[24] Laing, C. R., Chimeras in networks with purely local coupling, Phys. Rev. E, 92, 050904(R) (2015) · doi:10.1103/PhysRevE.92.050904
[25] Laing, C. R.; Rajendran, K.; Kevrekidis, I. G., Chimeras in random non-complete networks of phase oscillators, Chaos, 22, 1, 013132 (2012) · Zbl 1331.34055 · doi:10.1063/1.3694118
[26] Liu, C.; Weaver, D. R.; Strogatz, S. H.; Reppert, S. M., Cellular construction of a circadian clock: Period determination in the suprachiasmatic nuclei, Cell, 91, 6, 855-860 (1997) · doi:10.1016/S0092-8674(00)80473-0
[27] Lohe, M. A., Synchronization control in networks with uniform and distributed phase lag, Automatica, 54, 114-123 (2015) · Zbl 1318.93040 · doi:10.1016/j.automatica.2015.01.034
[28] Maistrenko, Y.; Penkovsky, B.; Rosenblum, M., Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions, Phys. Rev. E, 89, 6, 060901 (2014) · doi:10.1103/PhysRevE.89.060901
[29] Maistrenko, Y.; Sudakov, O.; Osiv, O.; Maistrenko, V., Chimera states in three dimensions, New J. Phys., 17, 7, 073037 (2015) · doi:10.1088/1367-2630/17/7/073037
[30] Martens, E. A., Bistable chimera attractors on a triangular network of oscillator populations, Phys. Rev. E, 82, 1, 016216 (2010) · doi:10.1103/PhysRevE.82.016216
[31] Martens, E. A., Chimeras in a network of three oscillator populations with varying network topology, Chaos, 20, 4, 043122 (2010) · Zbl 1311.34081 · doi:10.1063/1.3499502
[32] Martens, E. A.; Panaggio, M. J.; Abrams, D. M., Basins of attraction for chimera states, New J. Phys., 18, 2, 022002 (2016) · Zbl 1456.34034 · doi:10.1088/1367-2630/18/2/022002
[33] Martens, E. A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O., Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci., 110, 26, 10563-10567 (2013) · doi:10.1073/pnas.1302880110
[34] Martens, E. A.; Barreto, E.; Strogatz, S. H.; Ott, E.; So, P.; Antonsen, T. M., Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E, 79, 2, 26204(1-11) (2009) · doi:10.1103/PhysRevE.79.026204
[35] Martens, E. A.; Laing, C. R.; Strogatz, S. H., Solvable model of spiral wave chimeras, Phys. Rev. Lett., 104, 4, 044101 (2010) · doi:10.1103/PhysRevLett.104.044101
[36] Massie, T. M.; Blasius, B.; Weithoff, G.; Gaedke, U.; Fussmann, G. F., Cycles, phase synchronization, and entrainment in single-species phytoplankton populations, Proc. Nat. Acad. Sci., 107, 9, 4236-4241 (2010) · doi:10.1073/pnas.0908725107
[37] Michaels, D. C.; Matyas, E. P.; Jalife, J., Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis, Circ. Res., 61, 5, 704-714 (1987) · doi:10.1161/01.RES.61.5.704
[38] Montbrió, E.; Kurths, J.; Blasius, B., Synchronization of two interacting populations of oscillators, Phys. Rev. E, 70, 5, 056125 (2004) · doi:10.1103/PhysRevE.70.056125
[39] Motter, A. E.; Myers, S. A., Spontaneous synchrony in power-grid networks, Nat. Phys., 9, 1, 191-197 (2013) · doi:10.1038/nphys2535
[40] Olmi, S., Chimera states in coupled Kuramoto oscillators with inertia, Chaos, 25, 123125 (2015) · Zbl 1374.34117 · doi:10.1063/1.4938734
[41] Olmi, S.; Martens, E. A.; Thutupalli, S.; Torcini, A., Intermittency in chaotic chimera states, Phys. Rev. E, 92R, 030901 (2015) · doi:10.1103/PhysRevE.92.030901
[42] Omelchenko, I.; Omel’chenko, O. E.; Zakharova, A.; Wolfrum, M.; Schöll, E., Tweezers for chimeras in small networks, Phys. Rev. Lett., 116, 114101 (2016) · doi:10.1103/PhysRevLett.116.114101
[43] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 3, 037113 (2008) · Zbl 1309.34058 · doi:10.1063/1.2930766
[44] Ott, E.; Antonsen, T. M., Long time evolution of phase oscillator systems, Chaos, 19, 023117 (2009) · Zbl 1309.34059 · doi:10.1063/1.3136851
[45] Ott, E.; Hunt, B. R.; Antonsen, T. M., Comment on ‘Long time evolution of phase oscillator systems’ [Chaos 19, 023117 (2009)], Chaos, 21, 2, 025112 (2011) · Zbl 1317.34064 · doi:10.1063/1.3574931
[46] Panaggio, M. J.; Abrams, D. M., Chimera states on a flat torus, Phys. Rev. Lett., 110, 9, 094102 (2013) · doi:10.1103/PhysRevLett.110.094102
[47] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, 3, R67 (2015) · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[48] Panaggio, M. J.; Abrams, D. M., Chimera states on the surface of a sphere, Phys. Rev. E, 91, 022909 (2015) · Zbl 1392.34036 · doi:10.1103/PhysRevE.91.022909
[49] Panaggio, M. J.; Abrams, D. M.; Ashwin, P.; Laing, C. R., Chimera states in networks of phase oscillators: The case of two small populations, Phys. Rev. E, 93, 012218 (2016) · doi:10.1103/PhysRevE.93.012218
[50] Pietras, B.; Deschle, N.; Daffertshofer, A., Coupled networks and networks with bimodal frequency distributions are equivalent
[51] Pikovsky, A.; Rosenblum, M., Partially integrable dynamics of hierarchical populations of coupled oscillators, Phys. Rev. Lett., 101, 264103 (2008) · doi:10.1103/PhysRevLett.101.264103
[52] Schmidt, L.; Schönleber, K.; Krischer, K.; García-Morales, V., Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling, Chaos, 24, 1, 013102 (2014) · doi:10.1063/1.4858996
[53] Schönleber, K.; Zensen, C.; Heinrich, A.; Krischer, K., Pattern formation during the oscillatory photoelectrodissolution of n-type silicon: Turbulence, clusters and chimeras, New J. Phys., 16, 6, 63024 (2014) · doi:10.1088/1367-2630/16/6/063024
[54] Sethia, G. C.; Sen, A., Chimera states: The existence criteria revisited, Phys. Rev. Lett., 112, 144101 (2014) · doi:10.1103/PhysRevLett.112.144101
[55] Shanahan, M., Metastable chimera states in community-structured oscillator networks, Chaos, 20, 1, 013108 (2010) · doi:10.1063/1.3305451
[56] Shima, S. I.; Kuramoto, Y., Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E, 69, 3, 036213 (2004) · doi:10.1103/PhysRevE.69.036213
[57] Song, Q.; Wang, Z., Neural networks with discrete and distributed time-varying delays: A general stability analysis, Chaos, Solitons Fractals, 37, 5, 1538-1547 (2008) · Zbl 1142.34380 · doi:10.1016/j.chaos.2006.10.044
[58] Strogatz, S. H.; Abrams, D. M.; McRobie, A.; Eckhardt, B.; Ott, E., Theoretical mechanics: Crowd synchrony on the Millennium Bridge, Nature, 438, 7064, 43-44 (2005) · doi:10.1038/438043a
[59] Strogatz, S. H.; Mirollo, R. E., Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers, Phys. Rev. E, 47, 1, 220-227 (1993) · doi:10.1103/PhysRevE.47.220
[60] Suda, Y.; Okuda, K., Persistent chimera states in nonlocally coupled phase oscillators, Phys. Rev. E, 92, 6, 060901(R)(1-5) (2015) · doi:10.1103/PhysRevE.92.060901
[61] Swift, J. W.; Strogatz, S. H.; Wiesenfeld, K., Averaging of globally coupled oscillators, Physica D, 55, 3-4, 239-250 (1992) · Zbl 0743.34049 · doi:10.1016/0167-2789(92)90057-T
[62] Taylor, A. F.; Tinsley, M. R.; Wang, F.; Huang, Z.; Showalter, K., Dynamical quorum sensing and synchronization in large populations of chemical oscillators, Science, 323, 5914, 614-617 (2009) · doi:10.1126/science.1166253
[63] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 8, 662-665 (2012) · doi:10.1038/nphys2371
[64] Tyrrell, A.; Auer, G.; Bettstetter, C., Emergent slot synchronization in wireless networks, IEEE Trans. Mobile Comput., 9, 5, 719-732 (2010) · doi:10.1109/TMC.2009.173
[65] Watanabe, S.; Strogatz, S. H., Constants of motion for superconducting Josephson arrays, Physica D, 74, 197-253 (1994) · Zbl 0812.34043 · doi:10.1016/0167-2789(94)90196-1
[66] Wickramasinghe, M.; Kiss, I. Z., Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns, PLoS One, 8, 11, e80586 (2013) · doi:10.1371/journal.pone.0080586
[67] Wiesenfeld, K.; Colet, P.; Strogatz, S. H., Frequency locking in Josephson arrays: Connection with the Kuramoto model, Phys. Rev. E, 57, 2, 1563-1569 (1998) · doi:10.1103/PhysRevE.57.1563
[68] Wildie, M.; Shanahan, M., Metastability and chimera states in modular delay and pulse-coupled oscillator networks, Chaos, 22, 4, 043131 (2012) · Zbl 1319.34097 · doi:10.1063/1.4766592
[69] Wolfrum, M.; Gurevich, S. V.; Omel’chenko, O. E., Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators, Nonlinearity, 29, 2, 257-270 (2016) · Zbl 1338.34080 · doi:10.1088/0951-7715/29/2/257
[70] Wolfrum, M.; Omel’chenko, O., Chimera states are chaotic transients, Phys. Rev. E, 84, 1, 015201 (2011) · Zbl 1345.34067 · doi:10.1103/PhysRevE.84.015201
[71] Zhu, Y.; Zheng, Z.; Yang, J., Reversed two-cluster chimera state in non-locally coupled oscillators with heterogeneous phase lags, Europhys. Lett., 103, 1, 10007 (2013) · doi:10.1209/0295-5075/103/10007
[72] Montbrió, E.; Pazó, D., Shear diversity prevents collective synchronization, Phys. Rev. Lett., 106, 254101 (2011) · doi:10.1103/PhysRevLett.106.254101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.