×

Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels. (English) Zbl 1382.81053

Summary: As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the \(\chi \) state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
94A40 Channel models (including quantum) in information and communication theory
81S22 Open systems, reduced dynamics, master equations, decoherence
Full Text: DOI

References:

[1] Zhou, Z.L., Yang, C.N., Chen, B.J., Sun, X.M., Liu, Q., Jonathan, Wu Q.M.: Effective and efficient image copy detection with resistance to arbitrary rotation. IEICE Trans. Inf. Syst. E99-D(6), 1531-1540 (2016) · doi:10.1587/transinf.2015EDP7341
[2] Chen, X.Y., Chen, S., Wu, Y.L.: Coverless information hiding method based on the Chinese character encoding. J. Internet Technol. 18(2), 313-320 (2017)
[3] Xia, Z.H., Wang, X.H., Zhang, L.G., Qin, Z., Sun, X.M., Ren, K.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 11(11), 2594-2608 (2016) · doi:10.1109/TIFS.2016.2590944
[4] Fu, Z.J., Ren, K., Shu, J.G., Sun, X.M., Huang, F.X.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 25462559 (2016) · doi:10.1109/TPDS.2015.2506573
[5] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 175-179 (1984) · Zbl 1306.81030
[6] Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829-1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[7] Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64(6), 062309 (2001) · doi:10.1103/PhysRevA.64.062309
[8] Bennett, C.H., Brassard, G., Crepeau, C.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[9] Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000) · doi:10.1103/PhysRevA.62.012313
[10] Bennett, C.H., DiVincenzo, D.P., Shor, P.W.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001) · doi:10.1103/PhysRevLett.87.077902
[11] Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003) · doi:10.1103/PhysRevLett.90.127905
[12] Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003) · doi:10.1103/PhysRevLett.90.057901
[13] Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001) · doi:10.1103/PhysRevLett.87.197901
[14] Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284(10-11), 2617-2621 (2011) · doi:10.1016/j.optcom.2011.01.033
[15] Hou, K., Wang, J., Lu, Y.L.: Joint remote preparation of a multipartite GHZ-class state. Int. J. Theor. Phys. 48(7), 2005-2015 (2009) · Zbl 1171.81330 · doi:10.1007/s10773-009-9975-3
[16] Luo, M.X., Chen, X.B., Ma, S.Y.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796-4801 (2010) · doi:10.1016/j.optcom.2010.07.043
[17] Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51(5), 1647-1654 (2012) · Zbl 1255.81095 · doi:10.1007/s10773-011-1041-2
[18] Chen, X.B., Ma, S.Y., Su, Y.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11(6), 1653-1667 (2012) · Zbl 1263.81022 · doi:10.1007/s11128-011-0326-y
[19] Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the Brown state with no restriction. Int. J. Theor. Phys. 55(5), 2643-2652 (2016) · Zbl 1338.81101 · doi:10.1007/s10773-015-2899-1
[20] Zhang, P., Li, X., Ma, S.Y., Qu, Z.G.: Deterministic remote state preparation via the \[\chi\] χ state. Commun. Theor. Phys. 00, 0000 (2017)
[21] Ma, S.Y., Gao, C., Zhang, P.: Deterministic remote preparation via the Brown state. Quantum Inf. Process. 16(4), 93 (2017). UNSP · Zbl 1373.81030 · doi:10.1007/s11128-017-1542-x
[22] Wang, M.M., Qu, Z.G., Wang, W.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16(5), 140 (2017). UNSP · Zbl 1373.81121 · doi:10.1007/s11128-017-1594-y
[23] Wang, D., Hoehn, R.D., Ye, L., Sabre, K.: Generalized remote preparation of arbitrary m-qubit entangled states via genuine entanglements. Entropy 17, 1755-1774 (2015) · doi:10.3390/e17041755
[24] Wang, D., Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2135-2151 (2015) · Zbl 1317.81054 · doi:10.1007/s11128-015-0966-4
[25] Wang, D., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367-3381 (2016) · Zbl 1348.81150 · doi:10.1007/s11128-016-1346-4
[26] Brown, I.D.K., Stepney, S., Sudbery, A.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38(5), 1119-1131 (2005) · Zbl 1062.81007 · doi:10.1088/0305-4470/38/5/013
[27] Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15(11), 4805-4818 (2016) · Zbl 1357.81054 · doi:10.1007/s11128-016-1430-9
[28] Guan, X.W., Chen, X.B., Wang, L.C.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53(7), 2236-2245 (2014) · Zbl 1298.81036 · doi:10.1007/s10773-014-2024-x
[29] Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on joint remote preparation of multi-qubit state. Int. J. Theor. Phys. 15(2), 1750012 (2017) · Zbl 1375.81048
[30] Chen, Z.F., Liu, J.M., Ma, L.: Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise. Chin. Phys. B 23(2), 020312 (2014) · doi:10.1088/1674-1056/23/2/020312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.