×

An iteratively adaptive multiscale finite element method for elliptic interface problems. (English) Zbl 1382.65404

Summary: We develop and study a framework of multiscale finite element method (MsFEM) for solving the elliptic interface problems. Finding an appropriate boundary condition setting for local multiscale basis function problems is the current topic in the MsFEM research. In the proposed framework, which we call the iteratively adaptive MsFEM (i-ApMsFEM), the local-global information exchanges through iteratively updating the local boundary condition. Once the multiscale solution is recovered from the solution of global numerical formulation on coarse grids, which couples these multiscale basis functions, it provides feedback for updating the local boundary conditions on each coarse element. The key step of i-ApMsFEM is to perform a few smoothing iterations for the multiscale solution to eliminate the high-frequency error introduced by the inaccurate coarse solution before it is used for setting the boundary condition. As the method iterates, the quality of the MsFEM solution improves, since these adaptive basis functions are expected to capture the multiscale feature of the approximate solution more accurately. We demonstrate the advantage of the proposed method through some numerical examples for elliptic interface benchmark problems.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Software:

IIMPACK
Full Text: DOI

References:

[1] Babuska, I. M.; Sauter, S. A., Is the pollution effect of the fem avoidable for the Helmholtz equation considering high wave numbers?, SIAM Rev., 42, 451-484 (2000) · Zbl 0956.65095
[2] Briggs, W. L.; Henson, V. E.; McCormick, S. F., A Multigrid Tutorial (2000), SIAM · Zbl 0958.65128
[3] Burns, J. A.; Lin, T.; Stanley, L. G., A Petrov Galerkin finite-element method for interface problems arising in sensitivity computations, Comput. Math. Appl., 49, 1889-1903 (2005) · Zbl 1087.65078
[4] Chern, I.-L.; Shu, Y.-C., A coupling interface method for elliptic interface problems, J. Comput. Phys., 225, 2138-2174 (2007) · Zbl 1123.65108
[5] Chu, C.-C.; Graham, I. G.; Hou, T.-Y., A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput., 79, 1915-1955 (2010) · Zbl 1202.65154
[6] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Eng., 110, 325-342 (1993) · Zbl 0844.76048
[7] Efendiev, Y.; Ginting, V.; Hou, T.; Ewing, R., Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys., 220, 155-174 (2006) · Zbl 1158.76349
[8] Efendiev, Yalchin; Hou, T. Y., Multiscale Finite Element Methods. Theory and Applications (2009), Springer · Zbl 1163.65080
[9] Franca, L. P.; Farhat, C.; Macedo, A. P.; Lesoinne, M., Residual-free bubbles for the Helmholtz equation, Int. J. Numer. Methods Eng., 40, 4003-4009 (1997) · Zbl 0897.73062
[10] Franca, L. P.; Frey, S. L.; Hughes, T. J.R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Eng., 95, 253-276 (1992) · Zbl 0759.76040
[11] Franca, L. P.; Hwang, F.-N., Refining the submesh strategy in the two-level finite element method: application to the advection-diffusion equation, Int. J. Numer. Methods Fluids, 39, 161-187 (2002) · Zbl 1016.76047
[12] Franca, L. P.; Macedo, A. P., A two-level finite element method and its application to the Helmholtz equation, Int. J. Numer. Methods Eng., 43, 23-32 (1998) · Zbl 0935.65117
[13] Franca, L. P.; Madureira, A. L.; Valentin, F., Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions, Comput. Methods Appl. Mech. Eng., 194, 3006-3021 (2005) · Zbl 1091.76034
[14] Hajibeygi, H.; Bonfigli, G.; Hesse, M. A.; Jenny, P., Iterative multiscale finite-volume method, J. Comput. Phys., 227, 8604-8621 (2008) · Zbl 1151.65091
[15] Hajibeygi, H.; Jenny, P., Adaptive iterative multiscale finite volume method, J. Comput. Phys., 230, 628-643 (2011) · Zbl 1283.76041
[16] He, X.; Lin, T.; Lin, Y., Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8, 284-301 (2011) · Zbl 1211.65155
[17] Hou, T. Y.; Hwang, F.-N.; Liu, P.; Yao, C.-C., An iteratively adaptive multi-scale finite element method for elliptic pdes with rough coefficients, J. Comput. Phys., 336, 375-400 (2017) · Zbl 1380.65268
[18] Hou, T. Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) · Zbl 0880.73065
[19] Hou, T. Y.; Wu, X.-H.; Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput., 68, 913-943 (1999) · Zbl 0922.65071
[20] Li, Z., The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 253-267 (1998) · Zbl 0936.65091
[21] Li, K.; an Ito, Z., The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (2006), SIAM · Zbl 1122.65096
[22] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61-98 (2003) · Zbl 1055.65130
[23] Millward, R. R., A New Adaptive Multiscale Finite Element Method with Applications to High Contrast Interface Problems (2011), University of Bath, PhD thesis
[24] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[25] Shih, Y.-T.; Elman, H. C., Iterative methods for stabilized discrete convection-diffusion problems, IMA J. Numer. Anal., 20, 333-358 (2000) · Zbl 0980.65127
[26] Trottenberg, U.; Oosterlee, C.; Schűller, A., Multigrid (2000), Academic Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.