×

Heterogeneous coupling for implicitly described domains. (English) Zbl 1382.65313

Erhel, Jocelyne (ed.) et al., Domain decomposition methods in science and engineering XXI. Proceedings of the 21st international conference, Inria Rennes Center, France, June 25–29, 2012. Cham: Springer (ISBN 978-3-319-05788-0/hbk; 978-3-319-35548-1/pbk; 978-3-319-05789-7/ebook). Lecture Notes in Computational Science and Engineering 98, 809-817 (2014).
Summary: Modern imaging techniques yield high quality information of complex shaped microscopic structures. The unfitted discontinuous Galerkin method (UDG) offers an approach to solve partial differential equations on implicitly described domains, e.g. obtained using micro-CT imaging, without the need to construct a geometry-resolving mesh. The domain description uses a level set based formulation; still domain boundaries are incorporated explicitly. We present an extension of the UDG method to incorporate processes on manifolds in a heterogeneous domain-decomposition framework. Using an explicit reconstruction of the implicit domain boundary it is possible to couple level set based surface problems on the boundary with domain problems.
For the entire collection see [Zbl 1381.65002].

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
Full Text: DOI

References:

[1] Baaijens, F., A fictitious domain/mortar element method for fluid-structure interaction, Int. J. Numer. Methods Fluids, 35, 7, 743-761 (2001) · Zbl 0979.76044 · doi:10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
[2] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 3, 283-300 (1987) · Zbl 0629.65118 · doi:10.1093/imanum/7.3.283
[3] Bastian, P.; Engwer, C., An unfitted finite element method using discontinuous Galerkin, Int. J. Numer. Method Eng., 79, 12, 1557-1576 (2009) · Zbl 1176.65131 · doi:10.1002/nme.2631
[4] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing, Part ii: implementation and tests in dune. Computing, 82, 121-138 (2008) · Zbl 1151.65088
[5] Boettinger, W. J.; Warren, J. A.; Beckermann, C.; Karma, A., Phase-field simulation of solidification, Annu. Rev. Mater. Res., 32, 1, 163-194 (2002) · doi:10.1146/annurev.matsci.32.101901.155803
[6] Cirak, F.; Radovitzky, R., A Lagrangian-Eulerian shell-fluid coupling algorithm based on level sets, Comput. Struct., 83, 6, 491-498 (2005) · doi:10.1016/j.compstruc.2004.03.085
[7] Dziuk, G.; Elliott, C., Eulerian finite element method for parabolic pdes on implicit surfaces, Interfaces Free Bound., 10, 119-138 (2008) · Zbl 1145.65073 · doi:10.4171/IFB/182
[8] Engwer, C., Heimann, F.: Dune-udg: a cut-cell framework for unfitted discontinuous galerkin methods. In: Advances in DUNE, pp. 89-100. Springer, Berlin (2012)
[9] Farsad, M.; Vernerey, F.; Park, H., An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials, Int. J. Numer. Method Eng., 84, 12, 1466-1489 (2010) · Zbl 1202.74168 · doi:10.1002/nme.2946
[10] Gerstenberger, A.; Wall, W., An extended finite element method/lagrange multiplier based approach for fluid-structure interaction, Comput. Method Appl. Mech. Eng., 197, 19, 1699-1714 (2008) · Zbl 1194.76117 · doi:10.1016/j.cma.2007.07.002
[11] Glowinski, R.: Viscous flow simulation by finite element methods and related numerical techniques. In: Progress and Supercomputing in Computational Fluid Dynamics, pp. 173-210 (1985) · Zbl 0589.76042
[12] Goryachev, A.; Pokhilko, A., Dynamics of cdc42 network embodies a turing-type mechanism of yeast cell polarity, FEBS Lett., 582, 10, 1437-1443 (2008) · doi:10.1016/j.febslet.2008.03.029
[13] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Method Appl. Mech. Eng., 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125 · doi:10.1016/S0045-7825(02)00524-8
[14] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[15] Rivière, B., Bastian, P.: Discontinuous galerkin methods for two-phase flow in porous media. Technical Report 2004-28, IWR (SFB 359), University of Heidelberg (2004)
[16] Schiesser, W., The Numerical Method of Lines: Integration of Partial Differential Equations (1991), San Diego: Academic, San Diego · Zbl 0763.65076
[17] Sethian, J.; Strain, J., Crystal growth and dendritic solidification, J. Comput. Phys., 98, 2, 231-253 (1992) · Zbl 0752.65088 · doi:10.1016/0021-9991(92)90140-T
[18] Teigen, K.; Li, X.; Lowengrub, J.; Wang, F.; Voigt, A., A diffuse-interface approach for modelling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci., 7, 4, 1009-1037 (2009) · Zbl 1186.35168 · doi:10.4310/CMS.2009.v7.n4.a10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.