×

Marginal integration \(M\)-estimators for additive models. (English) Zbl 1382.62026

Summary: Additive regression models have a long history in multivariate non-parametric regression. They provide a model in which the regression function is decomposed as a sum of functions, each of them depending only on a single explanatory variable. The advantage of additive models over general non-parametric regression models is that they allow to obtain estimators converging at the optimal univariate rate avoiding the so-called curse of dimensionality. Beyond backfitting, marginal integration is a common procedure to estimate each component in additive models. In this paper, we propose a robust estimator of the additive components which combines local polynomials on the component to be estimated with the marginal integration procedure. The proposed estimators are consistent and asymptotically normally distributed. A simulation study allows to show the advantage of the proposal over the classical one when outliers are present in the responses, leading to estimators with good robustness and efficiency properties.

MSC:

62G35 Nonparametric robustness
62G05 Nonparametric estimation
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference

Software:

robustbase

References:

[1] Alimadad A, Salibián-Barrera M (2012) An outlier-robust fit for generalized additive models with applications to disease outbreak detection. J Am Stat Assoc 106:719-731 · Zbl 1232.62142 · doi:10.1198/jasa.2011.tm09654
[2] Baek J, Wehrly T (1993) Kernel estimation for additive models under dependence. Stoch Process Appl 47:95-112 · Zbl 0780.62031 · doi:10.1016/0304-4149(93)90096-M
[3] Bianco A, Boente G (1998) Robust kernel estimators for additive models with dependent observations. Can J Stat 6:239-255 · Zbl 0920.62050 · doi:10.2307/3315508
[4] Bianco A, Boente G (2007) Robust estimators under a semiparametric partly linear autoregression model: asymptotic behavior and bandwidth selection. J Time Ser Anal 28:274-306 · Zbl 1150.62038 · doi:10.1111/j.1467-9892.2006.00511.x
[5] Boente G, Fraiman R (1989) Robust nonparametric regression estimation. J Multivar Anal 29:180-198 · Zbl 0688.62027 · doi:10.1016/0047-259X(89)90023-7
[6] Boente G, Martínez A (2016) Estimating additive models with missing responses. Commun Stat Theory Methods 45:413-426 · Zbl 1338.62074 · doi:10.1080/03610926.2013.815780
[7] Boente G, Fraiman R, Meloche J (1997) Robust plug-in bandwidth estimators in nonparametric regression. J Stat Plan Inference 57:109-142 · Zbl 0900.62212 · doi:10.1016/S0378-3758(96)00039-0
[8] Boente G, González-Manteiga W, Pérez-González A (2009) Robust nonparametric estimation with missing data. J Stat Plan Inference 139:571-592 · Zbl 1149.62029 · doi:10.1016/j.jspi.2008.02.019
[9] Boente G, Ruiz M, Zamar R (2010) On a robust local estimator for the scale function in heteroscedastic nonparametric regression. Stat Probab Lett 80:1185-1195 · Zbl 1190.62081 · doi:10.1016/j.spl.2010.03.015
[10] Buja A, Hastie T, Tibshirani R (1989) Linear smoothers and additive models (with discussion). Ann Stat 17:453-555 · Zbl 0689.62029 · doi:10.1214/aos/1176347115
[11] Cantoni E, Ronchetti E (2001) Resistant selection of the smoothing parameter for smoothing splines. Stat Comput 11:141-146 · doi:10.1023/A:1008975231866
[12] Chen R, Härdle W, Linton O, Serverance-Lossin E (1996) Nonparametric estimation of additive separable regression models. In: Härdle W, Schimek MG (eds) Statistical theory and computational aspects of smoothing. Proceedings of the COMPSTAT 94 satellite meeting. Springer, pp 247-265 · Zbl 1086.62055
[13] Croux C, Gijbels I, Prosdocimi I (2011) Robust estimation of mean and dispersion functions in extended generalized additive models. Biometrics 68:31-44 · Zbl 1241.62108 · doi:10.1111/j.1541-0420.2011.01630.x
[14] Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Monographs on statistics and applied probability No. 43. Chapman and Hall, London · Zbl 0747.62061
[15] Hengartner N, Sperlich S (2005) Rate optimal estimation with the integration method in the presence of many covariates. J Multivar Anal 95:246-272 · Zbl 1070.62021 · doi:10.1016/j.jmva.2004.09.010
[16] Kong E, Linton O, Xia Y (2010) Uniform Bahadur representation for local polynomial estimates of \[M\] M-regression and its application to the additive model. Econom Theory 26:1529-1564 · Zbl 1198.62030 · doi:10.1017/S0266466609990661
[17] Leung D (2005) Cross-validation in nonparametric regression with outliers. Ann Stat 33:2291-2310 · Zbl 1086.62055 · doi:10.1214/009053605000000499
[18] Leung D, Marriott F, Wu E (1993) Bandwidth selection in robust smoothing. J Nonparametric Stat 4:333-339 · Zbl 1360.62132 · doi:10.1080/10485259308832562
[19] Li J, Zheng Z, Zheng M (2012) Robust estimation of additive models based on marginal integration. http://www.math.pku.edu.cn:8000/var/preprint/7065
[20] Linton O, Nielsen J (1995) A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82:93-101 · Zbl 0823.62036 · doi:10.1093/biomet/82.1.93
[21] Maronna R, Martin RD, Yohai V (2006) Robust statistics: theory and methods. Wiley, New York · Zbl 1094.62040 · doi:10.1002/0470010940
[22] Martínez-Miranda MD, Raya-Miranda R, González-Manteiga W, González-Carmona A (2008) A bootstrap local bandwidth selector for additive models. J Comput Graph Stat 17:38-55 · doi:10.1198/106186008X284097
[23] Nielsen J, Linton O (1998) An optimization interpretation of integration and back-fitting estimators for separable nonparametric models. J R Stat Soc 60:217-222 · Zbl 0909.62040 · doi:10.1111/1467-9868.00120
[24] Raya-Miranda R, Martínez-Miranda MD (2011) Data-driven local bandwidth selection for additive models with missing data. Appl Math Comput 217:10328-10342 · Zbl 1221.62065
[25] Severance-Lossin E, Sperlich S (1999) Estimation of derivatives for additive separable models. Statistics 33:241-265 · Zbl 0938.62044 · doi:10.1080/02331889908802693
[26] Sperlich S, Linton O, Härdle W (1999) Integration and backfitting methods in additive models-finite sample properties and comparison. TEST 8:419-458 · Zbl 0938.62045 · doi:10.1007/BF02595879
[27] Stone CJ (1980) Optimal rates of convergence for nonparametric estimators. Ann Stat 8:1348-1360 · Zbl 0451.62033 · doi:10.1214/aos/1176345206
[28] Stone CJ (1982) Optimal global rates of convergence for nonparametric regression. Ann Stat 10:1040-1053 · Zbl 0511.62048 · doi:10.1214/aos/1176345969
[29] Stone CJ (1985) Additive regression and other nonparametric models. Ann Stat 13:689-705 · Zbl 0605.62065 · doi:10.1214/aos/1176349548
[30] Tjøstheim D, Auestad B (1994) Nonparametric identification of nonlinear time series: selecting significant lags. J Am Stat Assoc 89:1410-1430 · Zbl 0813.62037
[31] Wang F, Scott D (1994) The \[L_1\] L1 method for robust nonparametric regression. J Am Stat Assoc 89:65-76 · Zbl 0791.62044
[32] Wong RKW, Yao F, Lee TCM (2014) Robust estimation for generalized additive models. J Comput Graph Stat 23:270-289 · doi:10.1080/10618600.2012.756816
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.