×

Monotonicity of expected \(f\)-vectors for projections of regular polytopes. (English) Zbl 1382.52004

Summary: Let \( P_n\) be an \( n\)-dimensional regular polytope from one of the three infinite series (regular simplices, regular crosspolytopes, and cubes). Project \( P_n\) onto a random, uniformly distributed linear subspace of dimension \( d\geq 2\). We prove that the expected number of \( k\)-dimensional faces of the resulting random polytope is an increasing function of \( n\). As a corollary, we show that the expected number of \( k\)-faces of the Gaussian polytope is an increasing function of the number of points used to generate the polytope. Similar results are obtained for the symmetric Gaussian polytope and the Gaussian zonotope.

MSC:

52A22 Random convex sets and integral geometry (aspects of convex geometry)
60D05 Geometric probability and stochastic geometry
52B11 \(n\)-dimensional polytopes
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
51M20 Polyhedra and polytopes; regular figures, division of spaces
52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)

References:

[1] Affentranger, Fernando; Schneider, Rolf, Random projections of regular simplices, Discrete Comput. Geom., 7, 3, 219-226 (1992) · Zbl 0751.52002 · doi:10.1007/BF02187839
[2] Baryshnikov, Yuliy M.; Vitale, Richard A., Regular simplices and Gaussian samples, Discrete Comput. Geom., 11, 2, 141-147 (1994) · Zbl 0795.52002 · doi:10.1007/BF02574000
[3] beermann_diss Mareen Beermann, Random Polytopes, Ph.D. thesis, University of Osnabr\"uck, 2015, Available at: https://repositorium.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2015062313276.
[4] beermann_reitzner Mareen Beermann and Matthias Reitzner, Monotonicity of functionals of random polytopes, In: G. Ambrus, K. B\`“or\'”oczky, and Z. F\`“uredi, (eds.): Discrete Geometry and Convexity, pp. 23-28, A. R\'”enyi Institute of Mathematics, Hungarian Academy of Sciences, 2017, preprint available at http://arxiv.org/abs/1706.08342.
[5] Berger, Marcel, Geometry. II, Universitext, x+406 pp. (1987), Springer-Verlag, Berlin · Zbl 1153.51001 · doi:10.1007/978-3-540-93816-3
[6] Betke, Ulrich; Henk, Martin, Intrinsic volumes and lattice points of crosspolytopes, Monatsh. Math., 115, 1-2, 27-33 (1993) · Zbl 0779.52013 · doi:10.1007/BF01311208
[7] B\`“ohm, Johannes; Hertel, Eike, Polyedergeometrie in \(n\)-dimensionalen R\'”aumen konstanter Kr\`“ummung, Lehrb\'”ucher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW). Mathematische Reihe [Textbooks and Monographs in the Exact Sciences. Mathematical Series] 70, 301 pp. (1981), Birkh\"auser Verlag, Basel-Boston, Mass. · Zbl 0466.52001
[8] Bonnet, Gilles; Grote, Julian; Temesvari, Daniel; Th\"ale, Christoph; Turchi, Nicola; Wespi, Florian, Monotonicity of facet numbers of random convex hulls, J. Math. Anal. Appl., 455, 2, 1351-1364 (2017) · Zbl 1380.60023 · doi:10.1016/j.jmaa.2017.06.054
[9] B\`“or\'”oczky, K\'aroly, Jr.; Henk, Martin, Random projections of regular polytopes, Arch. Math. (Basel), 73, 6, 465-473 (1999) · Zbl 0949.52001 · doi:10.1007/s000130050424
[10] Devillers, Olivier; Glisse, Marc; Goaoc, Xavier; Moroz, Guillaume; Reitzner, Matthias, The monotonicity of \(f\)-vectors of random polytopes, Electron. Commun. Probab., 18, no. 23, 8 pp. (2013) · Zbl 1359.60024 · doi:10.1214/ECP.v18-2469
[11] Donoho, David L.; Tanner, Jared, Counting faces of randomly projected polytopes when the projection radically lowers dimension, J. Amer. Math. Soc., 22, 1, 1-53 (2009) · Zbl 1206.52010 · doi:10.1090/S0894-0347-08-00600-0
[12] Donoho, David L.; Tanner, Jared, Counting the faces of randomly-projected hypercubes and orthants, with applications, Discrete Comput. Geom., 43, 3, 522-541 (2010) · Zbl 1191.52004 · doi:10.1007/s00454-009-9221-z
[13] Gr\`“unbaum, Branko, Convex polytopes, Graduate Texts in Mathematics 221, xvi+468 pp. (2003), Springer-Verlag, New York · Zbl 1024.52001 · doi:10.1007/978-1-4613-0019-9
[14] Hug, Daniel; Munsonius, G\`“otz Olaf; Reitzner, Matthias, Asymptotic mean values of Gaussian polytopes, Beitr\'”age Algebra Geom., 45, 2, 531-548 (2004) · Zbl 1082.52003
[15] Leichtweiss, K., Konvexe Mengen, Hochschulb\`“ucher f\'”ur Mathematik [University Books for Mathematics], 81, 330 pp. (1980), VEB Deutscher Verlag der Wissenschaften, Berlin · Zbl 0427.52001
[16] Ruben, Harold, On the geometrical moments of skew-regular simplices in hyperspherical space, with some applications in geometry and mathematical statistics, Acta Math., 103, 1-23 (1960) · Zbl 0224.50009 · doi:10.1007/BF02546523
[17] Schneider, Rolf, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 151, xxii+736 pp. (2014), Cambridge University Press, Cambridge · Zbl 1287.52001
[18] Schneider, Rolf; Weil, Wolfgang, Stochastic and integral geometry, Probability and its Applications (New York), xii+693 pp. (2008), Springer-Verlag, Berlin · Zbl 1175.60003 · doi:10.1007/978-3-540-78859-1
[19] Vershik, A. M.; Sporyshev, P. V., Asymptotic behavior of the number of faces of random polyhedra and the neighborliness problem, Selecta Math. Soviet., 11, 2, 181-201 (1992) · Zbl 0791.52011
[20] Vu, V. H., Sharp concentration of random polytopes, Geom. Funct. Anal., 15, 6, 1284-1318 (2005) · Zbl 1094.52002 · doi:10.1007/s00039-005-0541-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.