×

Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators. (English) Zbl 1382.47029

Summary: Zero point problems of two accretive operators and fixed point problems of nonexpansive mappings are investigated based on a Mann-like iterative algorithm. Weak convergence theorems are established in a Banach space.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H06 Nonlinear accretive operators, dissipative operators, etc.
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.

References:

[1] Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991) · Zbl 0757.46033 · doi:10.1016/0362-546X(91)90200-K
[2] Kato, T: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19, 508-520 (1967) · Zbl 0163.38303 · doi:10.2969/jmsj/01940508
[3] Bauschke, HH, Combettes, PL: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011) · Zbl 1218.47001 · doi:10.1007/978-1-4419-9467-7
[4] Censor, Y, Zenios, SA: Parallel Optimization. Oxford University Press, Oxford (1997) · Zbl 0945.90064
[5] Combettes, PL: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155-270 (1996) · doi:10.1016/S1076-5670(08)70157-5
[6] Iiduka, H: Iterative algorithm for solving triple-hierarchical constrained optimization problem. J. Optim. Theory Appl. 48, 580-592 (2011) · Zbl 1216.90092 · doi:10.1007/s10957-010-9769-z
[7] Aoyama, K, Iiduka, H, Takahashi, W: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, Article ID 35390 (2006) · Zbl 1128.47056 · doi:10.1155/FPTA/2006/35390
[8] Cho, SY, Qin, X, Wang, L: Strong convergence of a splitting algorithm for treating monotone operators. Fixed Point Theory Appl. 2014, Article ID 94 (2014) · Zbl 1332.47040 · doi:10.1186/1687-1812-2014-94
[9] Guan, WB, Song, W: The generalized forward-backward splitting method for the minimization of the sum of two functions in Banach spaces. Numer. Funct. Anal. Optim. 36, 867-886 (2015) · Zbl 1328.49029 · doi:10.1080/01630563.2015.1037591
[10] Kamimura, S, Takahashi, W: Weak and strong convergence of solutions to accretive operator inclusions and applications. Set-Valued Anal. 8, 361-374 (2000) · Zbl 0981.47036 · doi:10.1023/A:1026592623460
[11] Liu, M, Chang, SS: An iterative method for equilibrium problems and quasi-variational inclusion problems. Nonlinear Funct. Anal. Appl. 14, 619-638 (2009) · Zbl 1217.47119
[12] Qin, X, Cho, SY, Wang, L: Iterative algorithms with errors for zero points of m-accretive operators. Fixed Point Theory Appl. 2013, Article ID 148 (2013) · Zbl 1510.47094 · doi:10.1186/1687-1812-2013-148
[13] Bin Dehaish, BA, Qin, X, Latif, A, Bakodah, H: Weak and strong convergence of algorithms for the sum of two accretive operators with applications. J. Nonlinear Convex Anal. 16, 1321-1336 (2015) · Zbl 1327.47059
[14] Cho, SY, Latif, A, Qin, X: Regularization iterative algorithms for monotone and strictly pseudocontractive mappings. J. Nonlinear Sci. Appl. 9, 3909-3919 (2016) · Zbl 1350.47044
[15] Duca, PM, Muu, LD: A splitting algorithm for a class of bilevel equilibrium problems involving nonexpansive mappings. Optimization 65, 1855-1866 (2016). doi:10.1080/02331934.2016.1195831 · Zbl 1352.65162 · doi:10.1080/02331934.2016.1195831
[16] Hecai, Y: On weak convergence of an iterative algorithm for common solutions of inclusion problems and fixed point problems in Hilbert spaces. Fixed Point Theory Appl. 2013, Article ID 155 (2013) · Zbl 1317.47063 · doi:10.1186/1687-1812-2013-155
[17] Qin, X, Cho, SY, Wang, L: A regularization method for treating zero points of the sum of two monotone operators. Fixed Point Theory Appl. 2014, Article ID 75 (2014) · Zbl 1332.47026 · doi:10.1186/1687-1812-2014-75
[18] Qin, X, Bin Dehaish, BA, Cho, SY: Viscosity splitting methods for variational inclusion and fixed point problems in Hilbert spaces. J. Nonlinear Sci. Appl. 9, 2789-2797 (2016) · Zbl 1491.47070
[19] Yao, Y, Liou, YC, Yao, JC: Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, Article ID 127 (2015) · Zbl 1346.47077 · doi:10.1186/s13663-015-0376-4
[20] Yao, Y, Agarwal, RP, Postolache, M, Liou, YC: Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem. Fixed Point Theory Appl. 2014, Article ID 183 (2014) · Zbl 1467.47038 · doi:10.1186/1687-1812-2014-183
[21] Yao, Y, Agarwal, RP, Liou, YC: Iterative algorithms for quasi-variational inclusions and fixed point problems of pseudocontractions. Fixed Point Theory Appl. 2014, Article ID 82 (2014) · Zbl 1325.49017 · doi:10.1186/1687-1812-2014-82
[22] Yao, Y, Postolache, M, Liou, YC: Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, Article ID 201 (2013) · Zbl 1403.65027 · doi:10.1186/1687-1812-2013-201
[23] Bruck, RE: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces. Isr. J. Math. 32, 107-116 (1979) · Zbl 0423.47024 · doi:10.1007/BF02764907
[24] Browder, FE: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044 (1965) · Zbl 0128.35801 · doi:10.1073/pnas.54.4.1041
[25] Falset, JG, Kaczor, W, Kuczumow, T, Reich, S: Weak convergence theorems for asymptotically nonexpansive mappings and semigroups. Nonlinear Anal. 43, 377-401 (2007) · Zbl 0983.47040 · doi:10.1016/S0362-546X(99)00200-X
[26] Rockafellar, RT: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97-116 (1976) · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.