×

Evaluation of the Hamming weights of a class of linear codes based on Gauss sums. (English) Zbl 1381.94118

Summary: Linear codes with a few weights have been widely investigated in recent years. In this paper, we mainly use Gauss sums to represent the Hamming weights of a class of \(q\)-ary linear codes under some certain conditions, where \(q\) is a power of a prime. The lower bound of its minimum Hamming distance is obtained. In some special cases, we evaluate the weight distributions of the linear codes by semi-primitive Gauss sums and obtain some one-weight, two-weight linear codes. It is quite interesting that we find new optimal codes achieving some bounds on linear codes. The linear codes in this paper can be used in secret sharing schemes, authentication codes and data storage systems.

MSC:

94B05 Linear codes (general theory)
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
11T23 Exponential sums
94A62 Authentication, digital signatures and secret sharing

References:

[1] Baumert L.D., McEliece R.J.: Weights of irreducible cyclic codes. Inf. Control 20(2), 158-175 (1972). · Zbl 0239.94007
[2] Boer M.A.D.: Almost MDS codes. Des. Codes Cryptogr. 9, 143-155 (1996). · Zbl 0913.94025
[3] Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi Sums. Wiley, New York (1997). · Zbl 0906.11001
[4] Carlet C., Ding C., Yuan J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089-2102 (2005). · Zbl 1192.94114
[5] De Clerk F., Delanote M.: Two-weight codes, partial geometries and Steiner systems. Des. Codes Cryptogr. 21, 87-98 (2000). · Zbl 0971.51007
[6] Delsarte P.: Weights of linear codes and strongly regular normed spaces. Discret. Math. 3, 47-64 (1972). · Zbl 0245.94010
[7] Ding C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265-3275 (2015). · Zbl 1359.94685
[8] Ding C.: A construction of binary linear codes from Boolean functions. arXiv:1511.00321 [cs.IT]. · Zbl 1408.94979
[9] Ding C., Wang X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81-99 (2005). · Zbl 1078.68030
[10] Ding C., Niederreiter H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274-2277 (2007). · Zbl 1323.94156
[11] Ding C., Yang J.: Hamming weights in irreducible cyclic codes. Discret. Math. 313(4), 434-446 (2013). · Zbl 1269.94040
[12] Ding K., Ding C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879-1882 (2014).
[13] Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835-5842 (2015). · Zbl 1359.94687
[14] Ding C., Luo J., Niederreiter H.: Two-weight codes punctured from irreducible cyclic codes. In: Y. Li, S. Ling, H. Niederreiter, H. Wang, C. Xing, S. Zhang (eds.) Proceedings of 1st International Workshop on Coding Theory Cryptography, pp. 119-124. World Scientific, Singapore (2008). · Zbl 1160.94013
[15] Ding C., Gao Y., Zhou Z.: Five families of three-weight ternary cyclic codes and their duals. IEEE Trans. Inf. Theory 59(12), 7940-7946 (2013). · Zbl 1364.94651
[16] Grassl M.: Bounds on the minimum distance of linear codes. Available online. http://www.codetables.de. · Zbl 1145.94300
[17] Heng Z., Yue Q.: A class of binary linear codes with at most three weights. IEEE Commun. Lett. 19(9), 1488-1491 (2015).
[18] Heng Z., Yue Q.: Two classes of two-weight linear codes. Finite Fields Appl. 38, 72-92 (2016). · Zbl 1338.94100
[19] Heng Z., Yue Q.: Several classes of cyclic codes with either optimal three weights or a few weights. IEEE Trans. Inf. Theory. doi:10.1109/TIT.2016.2550029. · Zbl 1359.94768
[20] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory. Springer, New York (1982). · Zbl 0482.10001
[21] Li C., Yue Q., Li F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94-114 (2014). · Zbl 1366.94641
[22] Li C., Yue Q., Li F.: Hamming weights of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 56(6), 2568-2570 (2014).
[23] Li C., Bae S., Ahn J., Yang S., Yao Z.: Complete weight enumerators of some linear codes and their applications. Des. Codes Cryptogr. doi:10.1007/s10623-015-0136-9. · Zbl 1379.94058
[24] Li F., Wang Q., Lin D.: A class of three-weight and five-weight linear codes. arXiv:1509.06242 [cs.IT]. · Zbl 1431.94158
[25] Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1984). · Zbl 0866.11069
[26] Shamir A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612-613 (1979). · Zbl 0414.94021
[27] Tang C., Li N., Qi Y., Zhou Z., Helleseth T.: Two-weight and three-weight linear codes from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166-1176 (2016). · Zbl 1359.94738
[28] Vega G.: A critical review and some remarks about one and two-weight irreducible cyclic codes. Finite Fields Appl. 33, 1-13 (2015). · Zbl 1368.11134
[29] Vega G.: A characterization of a class of optimal three-weight cyclic codes of dimension 3 over any finite field. arXiv:1508.05077 [cs.IT]. · Zbl 1364.94662
[30] Wang Q., Ding K., Xue R.: Binary linear codes with two weights. IEEE Commun. Lett. 19(7), 1097-1100 (2015).
[31] Xiang C.: Linear codes from a generic construction. Cryptogr. Commun. doi:10.1007/s12095-015-0158-1. · Zbl 1372.94458
[32] Xiong M.: The weight distributions of a class of cyclic codes. Finite Fields Appl. 18(5), 933-945 (2012). · Zbl 1271.94034
[33] Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206-212 (2006). · Zbl 1283.94105
[34] Zhou Z., Li N., Fan C., Helleseth T.: Linear codes with two or three weights from quadratic bent functions. Des. Codes Cryptogr. doi:10.1007/s10623-015-0144-9. · Zbl 1405.94116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.