×

High-order methods for turbulent flows on three-dimensional strand grids. (English) Zbl 1381.76134

Summary: In this paper, we formulate a high-order flux correction method for three-dimensional laminar and turbulent flows on strand grids. Building on previous work, we treat flux derivatives along strands with high-order summation-by-parts operators and penalty-based boundary conditions. Where turbulence modeling is required, a robust version of the Spalart-Allmaras model is employed that accommodates negative values of the turbulence working variable. Fundamental verification and validation studies are considered, which demonstrate the flux correction method achieves high-order accuracy for both laminar and turbulent flows. The high-order flux correction requires only 30 % more walltime to converge when compared to a second-order scheme.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Allmaras, S., Johnson, F., Spalart, P.: Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model. Technical Report ICCFD7-1902, 7th International Conference on Computational Fluid Dynamics (2012) · Zbl 1439.76111
[2] Barth, T.J., Frederickson, P.: Higher order solution of the euler equations on unstructured grids using quadratic reconstruction. AIAA paper 1990-0013, AIAA 28th Aerospace Sciences Meeting, Reno, NV (1990) · Zbl 1408.76345
[3] Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2d euler equations. J. Comput. Phys. 138, 251-285 (1997) · Zbl 0902.76056 · doi:10.1006/jcph.1997.5454
[4] Benek, J.A., Steger, J.L., Dougherty, F.C.: A flexible grid embedding technique with application to the euler equations. AIAA paper 1983-1944, AIAA 6th Computational Fluid Dynamics Conference, Danvers, MA (1983) · Zbl 1008.65062
[5] Carpenter, M., Gottlieb, D., Abarbanel, S.: Time-stagle boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. ICASE Report 93-9, ICASE, Hampton, VA (1993) · Zbl 0832.65098
[6] Carpenter, M.H., Gottlieb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comput. Phys. 108(2), 272-295 (1993). doi:10.1006/jcph.1993.1182 · Zbl 0791.76052 · doi:10.1006/jcph.1993.1182
[7] Delanaye, M., Liu, Y.: Quadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids. AIAA paper 1995-3259, AIAA 14th CFD Conference, Norfolk (1999) · Zbl 1305.76058
[8] Diener, P., Dorband, E., Schnetter, E., Tiglio, M.: Optimized high-order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions. J. Sci. Comput. 32, 109-145 (2007) · Zbl 1120.65092 · doi:10.1007/s10915-006-9123-7
[9] Fernandez, D.C.D.R., Zingg, D.: High-order compact-stencil summation-by-parts operators for the second derivative with variable coefficients. Technical Report ICCFD7-2803, 7th International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, HI (2012) · Zbl 1072.65118
[10] Hsieh, T.: An investigation of separated flow about a hemisphere-cylinder at 0- to 19- deg incidence in the mach number range from 0.6 to 1.5. AEDC-TR 76-112, Arnold Engineering Development Center (1976)
[11] Katz, A., Sankaran, V.: An efficient correction method to obtain a formally third-order accurate flow solver for node-centered unstructured grids. J. Sci. Comput. 51, 375-393 (2012) · Zbl 1439.76111 · doi:10.1007/s10915-011-9515-1
[12] Katz, A., Wissink, A., Sankaran, V., Meakin, R., Sitaraman, J.: Application of strand meshes to complex aerodynamic flow fields. J. Comput. Phys. 230, 6512-6530 (2011) · Zbl 1408.76345 · doi:10.1016/j.jcp.2011.04.036
[13] Katz, A., Work, D.: High-order flux correction/finite difference schemes for strand grids. J. Comput. Phys. 282, 360-380 (2015) · Zbl 1352.65241 · doi:10.1016/j.jcp.2014.11.019
[14] Kreiss, H.; Scherer, G.; Boor, CD (ed.), Finite element and finite difference methods for hyperbolic partial differential equations (1974), Massachusetts · Zbl 0355.65085
[15] Lee, Y.L., Baeder, J.: Implicit hole cutting: a new approach to overset grid connectivity. AIAA paper 2003-4128, AIAA 16th Computational Fluid Dynamics Conference, Orlando, FL (2003) · Zbl 1252.65055
[16] Magnaudet, J., Riviero, M., Fabre, J.: Accelerated flows past a sphere or spherical bubble. part 1: steady streaming flow. J. Fluid Mech. 284, 97-135 (1995) · Zbl 0848.76063 · doi:10.1017/S0022112095000280
[17] Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients. J. Sci. Comput. 51, 650-682 (2012) · Zbl 1252.65055 · doi:10.1007/s10915-011-9525-z
[18] Meakin, R., Wissink, A., Chan, W., Pandya, S., Sitaraman, J.: On strand grids for complex flows. AIAA paper 2007-3834, AIAA 18th Computational Fluid Dynamics Conference, Miami, FL (2007)
[19] Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45, 453-473 (2003) · Zbl 1019.65066 · doi:10.1016/S0168-9274(02)00239-8
[20] Ollivier-Gooch, C., Nejat, A., Michalak, K.: On obtaining high-order finite-volume solutions to the Euler equations on unstructured meshes. AIAA paper 2007-4464, AIAA 18th Computational Fluid Dynamics Conference, Miami, FL (2007) · Zbl 0792.65011
[21] Pincock, B., Katz, A.: High-order flux correction for viscous flows on arbitrary unstructured grids. AIAA paper, AIAA 21st Computational Fluid Dynamics Conference, San Diego, CA (2013) · Zbl 1299.76161
[22] Pruppacher, H., Clair, B.L., Hamielec, A.: Some relations between drag and flow pattern of viscous flow past a sphere and cylinder at low and intermediate Reynolds numbers. J. Fluid Mech. 44, 781-791 (1970) · doi:10.1017/S0022112070002148
[23] Roache, P.: Code verification by the method of manufactured solutions. Trans. ASME 124, 4-10 (2002)
[24] Roy, C.: Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205, 131-156 (2005) · Zbl 1072.65118 · doi:10.1016/j.jcp.2004.10.036
[25] Rumsey, C.: NASA Langley turbulence modeling resource. http://turbmodels.larc.nasa.gov (2015)
[26] Sakamoto, H., Haniu, H.: A study on vortex shedding from spheres in a uniform flow. J. Fluids Eng. 112, 386-392 (1990) · doi:10.1115/1.2909415
[27] Sitaraman, J., Floros, M., Wissink, A., Potsdam, M.: Parallel domain connectivity algorithm for unsteady flow computations using overlapping and adaptive grids. J. Comput. Phys. 229, 4703-4723 (2008) · Zbl 1305.76058 · doi:10.1016/j.jcp.2010.03.008
[28] Solin, P., Segeth, K., Dolezel, I.: Higher-order finite element methods. CRC Press, Boca Raton (2003)
[29] Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. Recherche Aerospatiale 1, 5-21 (1994)
[30] Steger, J., Dougherty, F., Benek, J.: A chimera grid scheme. Technical Report, ASME Mini-Symposium on Advances in Grid Generation, Houston, TX (1983)
[31] Strand, B.: Summation by parts for finite difference approximation for d/dx. J. Comput. Phys. 110, 47-67 (1994) · Zbl 0792.65011 · doi:10.1006/jcph.1994.1005
[32] Svärd, M., Carpenter, M., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions. J. Comput. Phys. 225, 1020-1038 (2007) · Zbl 1118.76047 · doi:10.1016/j.jcp.2007.01.023
[33] Svärd, M., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier-Stokes equations, no-slip wall boundary conditions. J. Comput. Phys. 227, 4805-4824 (2008) · Zbl 1260.76021 · doi:10.1016/j.jcp.2007.12.028
[34] Taneda, S.: Experimental investigation of wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Jpn. 11, 1104-1108 (1956) · doi:10.1143/JPSJ.11.1104
[35] Taneda, S.: Visual observations of flow past a sphere at Reynolds numbers between \[10^4104\] and \[10^6106\]. J. Fluid Mech. 85, 187-192 (1978) · doi:10.1017/S0022112078000580
[36] Tomboulides, A., Orszag, S., Karniadakis, G.: Direct and large eddy simulations of axisymmetric wakes. AIAA paper 93-0546 (1993)
[37] Tong, O., Work, D., Katz, A.: High-order methods for turbulence using strand grids. Technical Report. ICCFD8-0215, 8th International Conference on Computational Fluid Dynamics (ICCFD8), Chengdu, China (2014)
[38] Visbal, M., Gaitonde, D.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155-185 (2002) · Zbl 1008.65062 · doi:10.1006/jcph.2002.7117
[39] Wissink, A.: Helios solver developments including strand meshes. Oral presentation, 11th Symposium on Overset Composite Grids and Solution Technology (2012)
[40] Wissink, A., Katz, A., Chan, W., Meakin, R.: Validation of the strand grid approach. AIAA paper 2009-3792, AIAA 19th Computational Fluid Dynamics Conference, San Antonio, TX (2009)
[41] Wissink, A., Potsdam, M., Sankaran, V., Sitaraman, J., Yang, Z., Mavriplis, D.: A coupled unstructured-adaptive cartesian cfd approach for hover prediction. Technical Report, American Helicopter Society 66th Annual Forum, Phoenix, AZ (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.