×

Two approaches for studying the impact response of viscoelastic engineering systems: an overview. (English) Zbl 1381.74170

Summary: Two approaches for studying the impact response of viscoelastic engineering structures are considered by the example of the dynamic response of a viscoelastic Bernoulli-Euler beam transversely impacted by an elastic sphere. The Young’s modulus of the viscoelastic beam is the time-dependent operator, which is defined either via the Kelvin-Voigt fractional derivative model or via the standard linear solid fractional derivative model. The first approach assumes that Poisson’s ratio is not an operator but a constant, while under the second approach the bulk modulus is considered to be constant. The transverse impact of the elastic sphere upon the viscoelastic beam is investigated using both approaches. The comparison of the results obtained shows that the solution obtained at the constant Poisson’s ratio is much simpler than that at the constant bulk modulus.

MSC:

74M20 Impact in solid mechanics
74D05 Linear constitutive equations for materials with memory
26A33 Fractional derivatives and integrals
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Rabotnov, Yu. N., Elements of Hereditary Solid Mechanics (1977), Nauka: Nauka Moscow, Engl. transl. by Mir Publishers, Moscow, 1980 · Zbl 0515.73026
[2] Ilyasov, M. H.; Aköz, A. Y., The vibration and dynamic stability of viscoelastic plates, International Journal of Engineering Science, 38, 695-714 (2000) · Zbl 1210.74112
[3] Gaul, L., The influence of damping on waves and vibrations, Mechanical Systems and Signal Processing, 13, 1-30 (1999)
[4] Schanz, M., A boundary element formulation in time domain for viscoelastic solids, Communications in Numerical Methods in Engineering, 15, 799-809 (1999) · Zbl 0952.74080
[5] Sinaiskii, E. S., Bending of a circular plate made of a material with inhomogeneous hereditary and elastic properties, International Applied Mechanics, 28, 230-235 (1992) · Zbl 0796.73032
[6] Aköz, Y.; Kadioǧlu, F., The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic Timoshenko beams, International Journal for Numerical Methods in Engineering, 44, 1909-1932 (1999) · Zbl 0932.74064
[7] Babouskos, N.; Katsikadelis, J. T., Nonlinear vibrations of viscoelastic plates of fractional derivative type: an AEM solution, The Open Mechanics Journal, 4, 8-20 (2010)
[8] Argatov, I., An analytical solution of the rebound indentation problem for an isotropic linear viscoelastic layer loaded with a spherical punch, Acta Mechanica, 223, 1441-1453 (2012) · Zbl 1401.74216
[9] Hayes, W. C.; Mockros, L. F., Viscoelastic properties of human articular cartilage, Journal of Applied Physiology, 31, 562-568 (1971)
[10] Kaminskii, A. A.; Selivanov, M. F., A method for determining the viscoelastic characteristics of composites, International Applied Mechanics, 41, 569-580 (2005)
[11] Kaminskii, A. A.; Selivanov, M. F., An approach to the determination of the deformation characteristics of viscoelastic materials, International Applied Mechanics, 41, 867-875 (2005) · Zbl 1089.74509
[12] Zhu, Z. Y.; Li, G. G.; Cheng, C. J., Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation, Applied Mathematics and Mechanics, 23, 1-12 (2002) · Zbl 1141.74340
[13] Levin, V.; Sevostianov, I., Micromechanical modeling of the effective viscoelastic properties of inhomogeneous materials using fraction-exponential operators, International Journal of Fracture, 134, L37-L44 (2005) · Zbl 1196.74170
[14] Lee, E. N.; Radok, J. R.M., The contact problem for viscoelastic bodies, ASME Journal of Applied Mechanics, 27, 438-444 (1960) · Zbl 0094.37503
[15] Meshkov, S. I.; Pachevskaya, G. N., Allowance for bulk relaxation by the method of internal friction, Journal of Applied Mechanics and Technical Physics, 8, 80-82 (1967)
[16] Selivanov, M. F., Effective properties of a linear viscoelastic composite, International Applied Mechanics, 45, 1084-1091 (2009) · Zbl 1267.74098
[17] Selivanov, M. F.; Chornoivan, Y. O., Computational optimization of characteristics for composites of viscoelastic components, Journal of Engineering Mathematics, 74, 91-100 (2012) · Zbl 1254.74030
[18] Phillips, J. W.; Calvit, H. H., Impact of a rigid sphere on a viscoelastic plate, ASME Journal of Applied Mechanics, 34, 873-878 (1967)
[19] Jonson, K., Contact Mechanics (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0599.73108
[20] Kren, A. P.; Naumov, A. O., Determination of the relaxation function for viscoelastic materials at low velocity impact, International Journal of Impact Engineering, 37, 170-176 (2010)
[21] Rossikhin, Yu. A.; Shitikova, M. V., Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Applied Mechanics Reviews, 63, 010801-1-010801-52 (2010)
[22] Li, G. G., Dynamic behaviors of Timoshenko beam with fractional derivative constitutive relation, International Journal of Nonlinear Science and Numerical Simulation, 3, 67-73 (2002) · Zbl 1079.74032
[25] Rossikhin, Yu. A.; Shitikova, M. V., Transient response of thin bodies subjected to impact: wave approach, Shock and Vibration Digest, 39, 273-309 (2007)
[26] Rossikhin, Yu. A.; Shitikova, M. V., Fractional-derivative viscoelastic model of the shock interaction of a rigid body with a plate, Journal of Engineering Mathematics, 60, 101-113 (2008) · Zbl 1140.74521
[27] Ingman, D.; Suzdalnitsky, J., Response of viscoelastic plate to impact, ASME Journal of Vibration and Acoustics, 130, 011010-1-011010-8 (2008)
[28] Rossikhin, Yu. A.; Shitikova, M. V., The analysis of the impact response of a thin plate via fractional derivative standard linear solid model, Journal of Sound and Vibration, 330, 1985-2003 (2011)
[30] Timoshenko, S. P., Zur Frage nach der Wirkung eines Stosses auf einen Balken, Zeitschrift für Mathematik und Physik, 62, 198-209 (1913), (in German) · JFM 44.0937.03
[31] Rossikhin, Yu. A., Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids, Applied Mechanics Reviews, 63, 010701-1-010701-12 (2010)
[32] Achar, B. N.N.; Hanneken, J. W.; Clarke, T., Response characteristics of a fractional oscillator, Physica A, 309, 275-288 (2002) · Zbl 0995.70017
[33] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics. Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures, vol. 378 (1997), Springer: Springer Wien, NY), 223-276 · Zbl 1438.26010
[34] Beyer, H.; Kempfle, S., Definition of physically consistent damping laws with fractional derivatives, ZAMM, 75, 623-635 (1995) · Zbl 0865.70014
[35] Meshkov, S. I.; Pachevskaya, G. N.; Postnikov, V. S.; Rossikhin, Yu. A., Integral representation of \(\ni_\gamma \)-functions and their application to problems in linear viscoelasticity, International Journal of Engineering Science, 9, 387-398 (1971) · Zbl 0219.73043
[36] Zener, C., The intrinsic inelasticity of large plates, Physics Reviews, 59, 669-673 (1941) · JFM 67.0828.01
[37] Zukas, J. A.; Nicholas, T.; Swift, H. F.; Greszczuk, L. B.; Curran, D. R., Impact Dynamics (1982), Wiley: Wiley New York
[38] Hunter, S. C., The Hertz problem for a rigid spherical indenter and a viscoelastic half space, Journal of Mechanics and Physics of Solids, 8, 219-234 (1960) · Zbl 0095.39102
[39] Rabotnov, Yu. N., Equilibrium of an elastic medium with after-effect, Prikladnaja Matematika i Mekhanika, 12, 53-62 (1948), (in Russian) · Zbl 0036.24903
[40] Rossikhin, Yu. A.; Shitikova, M. V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews, 50, 15-67 (1997)
[41] Zener, C., Mechanical behavior of high damping metals, Journal of Applied Physics, 18, 1022-1025 (1947)
[42] Zener, C., Elasticity and Anelasticity of Metals (1948), University of Chicago Press · Zbl 0032.22202
[43] Meshkov, S. I., Description of internal friction in the memory theory of elasticity using kernels with a weak singularity, Journal of Applied Mechanics and Technical Physics, 8, 101-102 (1967)
[44] Shermergor, D. T., On the use of fractional differentiation operators for the description of elastic-aftereffect properties of materials, Journal of Applied Mechanics and Technical Physics, 7, 85-87 (1966), (Engl. transl.)
[45] Gemant, A., A method for analyzing experimental results obtained from elasto-viscous bodies, Physics, 7, 311-317 (1936)
[46] Bagley, R. L.; Torvik, P. J., On the fractional calculus model of viscoelastic behavior, Journal of Rheology, 30, 133-155 (1986) · Zbl 0613.73034
[47] Lion, A., Thermomechanically consistent formulations of the standard linear solid using fractional derivatives, Archive of Mechanics, 53, 253-273 (2001) · Zbl 1012.74006
[48] Rossikhin, Yu. A.; Shitikova, M. V., Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders, Shock and Vibration Digest, 36, 3-26 (2004)
[49] Rossikhin, Yu. A.; Shitikova, M. V., Comparative analysis of viscoelastic models involving fractional derivatives of different orders, Fractional Calculus & Applied Analysis, 10, 111-121 (2007) · Zbl 1145.74006
[50] Rossikhin, Yu. A.; Shitikova, M. V., Free damped vibrations of a viscoelastic oscillator based on Rabotnov’s model, Mechanics of Time-Dependent Materials, 12, 129-149 (2008)
[51] Rossikhin, Yu. A.; Shitikova, M. V.; Shcheglova, T. A., Analysis of free vibrations of a viscoelastic oscillator via the models involving several fractional parameters and relaxation/retardation times, Computers & Mathematics with Applications, 59, 1727-1744 (2010) · Zbl 1189.44001
[52] Koeller, R. C., Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics, Acta Mechanica, 58, 251-264 (1986) · Zbl 0578.73040
[53] Koeller, R. C., Toward an equation of state for solid materials with memory by use of the half-order derivative, Acta Mechanica, 191, 125-133 (2007) · Zbl 1117.74005
[54] Koeller, R. C., A theory relating creep and relaxation for linear materials with memory, ASME Journal of Applied Mechanics, 77, 031008-1-031008-9 (2010)
[55] Baleanu, D.; Golmankhaneh, A. K.; Nigmatullin, R.; Golmankhaneh, A. K., Fractional Newtonian mechanics, Central European Journal of Physics, 8, 120-125 (2010)
[56] Rossikhin, Y. A.; Shitikova, M. V., New approach for the analysis of damped vibrations of fractional oscillators, Shock and Vibration, 16, 365-387 (2009)
[57] Akbarov, S. D.; Cilli, A.; Guz, A. N., The theoretical strength limit in compression of viscoelastic layered composite materials, Composites: Part B, 30, 465-472 (1999)
[58] Akbarov, S. D.; Yahnioglu, N.; Kutug, Z., On the three-dimensional stability loss problem of the viscoelastic composite plate, International Journal of Engineering Science, 39, 1443-1457 (2001) · Zbl 1210.74036
[59] Kutug, Z.; Yahnioglu, N.; Akbarov, S. D., The loss of stability analyses of an elastic and viscoelastic composite circular plate in the framework of three-dimensional linearized theory, European Journal of Mechanics A/Solids, 22, 475-488 (2003) · Zbl 1032.74558
[60] Akbarov, S. D.; Tekercioglu, R., Surface undulation instability of the viscoelastic half-space covered with the stack of layers in bi-axial compression, International Journal of Mechanical Sciences, 49, 778-789 (2007)
[61] Cilli, A., On the theoretical strength limit of the layered elastic and viscoelastic composites in compression, Applied Mathematical Modelling, 35, 5470-5479 (2011) · Zbl 1228.74021
[62] Akbarov, S. D.; Karakaya, S., 3D Analyses of the symmetric local stability loss of the circular hollow cylinder made from viscoelastic composite material, Applied Mathematical Modelling, 36, 4241-4260 (2012) · Zbl 1252.74018
[63] Akbarov, S. D.; Karakaya, S., 3D analyses of the global stability loss of the circular hollow cylinder made from viscoelastic composite material, European Journal of Mechanics A/Solids, 33, 48-66 (2012) · Zbl 1348.74222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.