×

Free vibration analysis of cylindrical shells partially resting on an elastic foundation. (English) Zbl 1381.74105

Summary: The present study aims at the investigation of free vibration analysis of thin cylindrical shells surrounded by an elastic medium, which is distributed over a particular length of the shell. The Love’s shell theory is utilized along with the Winkler foundation to obtain the governing equations of motion. An exact series expansion method of solution is employed for any arbitrary boundary conditions. The excellent accuracy of the obtained results is validated by comparing to the available literature. Moreover, several case studies are performed to provide an insight into the influence of some practically important parameters on free vibrations of circular cylindrical shells, including stiffness and length of the partial foundation. Finally, it is concluded that the proposed method can accurately determine the exact solution to the free vibration of shells partially surrounded by elastic foundations with any boundary conditions.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
Full Text: DOI

References:

[1] Winkler E (1867) Die lehre von elastizitat und festigkeit. Prag Dominicus
[2] Pasternak P (1954) On a new method of analysis of an elastic foundation by means of two foundation constants. Gosuedarstvennoe Izadatelstvo Literatim po Stroitelstvu I Arkhitekture 1:156 · Zbl 0457.73042
[3] Kerr AD (1964) Elastic and viscoelastic foundation models. J Appl Mech 31:491-498 · Zbl 0134.44303 · doi:10.1115/1.3629667
[4] Paliwal D, Pandey RK, Nath T (1996) Free vibrations of circular cylindrical shell on winkler and pasternak foundations. Int J Press Vessels Pip 69(1):79-89 · doi:10.1016/0308-0161(95)00010-0
[5] Paliwal D, Pandey RK (1998) The free vibration of a cylindrical shell on an elastic foundation. J Vib Acoust 120(1):63-71 · doi:10.1115/1.2893828
[6] Malekzadeh P, Farid M, Zahedinejad P, Karami G (2008) Threedimensional free vibration analysis of thick cylindrical shells resting on two-parameter elastic supports. J Sound Vib 313(35):655-675 · doi:10.1016/j.jsv.2007.12.004
[7] Sofiyev AH, Avcar M, Ozyigit P, Adigozel S (2009) The free vibration of non-homogeneous truncated conical shells on a winkler foundation. Int J Eng Appl Sci 1:34-41
[8] Sofiyev AH, Avcar M (2010) The stability of cylindrical shells containing an fgm layer subjected to axial load on the pasternak foundation. J Eng 4(2):228-236 · doi:10.4236/eng.2010.24033
[9] Malekzadeh P, GolbaharHaghighi M, AlibeygiBeni A (2012) Buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates on elastic foundations. Meccanica 47(2):321-333 · Zbl 1293.74124 · doi:10.1007/s11012-011-9436-y
[10] Lal R, Saini R (2015) Buckling and vibration analysis of non-homogeneous rectangular kirchhoff plates resting on two-parameter foundation. Meccanica 50(4):893-913 · Zbl 1317.74057 · doi:10.1007/s11012-014-0073-0
[11] Doyle PF, Pavlovic MN (1982) Vibration of beams on partial elastic foundations. Earthq Eng Struct Dyn 10(5):663-674 · doi:10.1002/eqe.4290100504
[12] Eisenberger M, Yankelevsky DZ, Adin MA (1985) Vibrations of beams fully or partially supported on elastic foundations. Earthq Eng Struct Dyn 13(5):651-660 · doi:10.1002/eqe.4290130507
[13] Motaghian SE, Mofid M, Alanjari P (2011) Exact solution to free vibration of beams partially supported by an elastic foundation. Sci Iran 18(4):861-866 · Zbl 1277.74031 · doi:10.1016/j.scient.2011.07.013
[14] Kim YW (2015) Free vibration analysis of fgm cylindrical shell partially resting on pasternak elastic foundation with an oblique edge. Compos B Eng 70:263-276 · doi:10.1016/j.compositesb.2014.11.024
[15] Amabili M, Dalpiaz G (1997) Free vibrations of cylindrical shells with non-axisymmetric mass distribution on elastic bed. Meccanica 32(1):71-84 · Zbl 0877.73034 · doi:10.1023/A:1004219803239
[16] Amabili M, Garziera R (2000) Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part I: empty and fluid-filled shells. J Fluids Struct 14(5):669-690 · doi:10.1006/jfls.2000.0288
[17] Amabili M, Garziera R (2002) Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part II: shells containing or immersed in axial flow. J Fluids Struct 16(1):31-51 · doi:10.1006/jfls.2001.0402
[18] Amabili M, Garziera R (2002) Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part III: steady viscous effects on shells conveying fluid. J Fluids Struct 16(6):795-809 · doi:10.1006/jfls.2002.0446
[19] Gunawan H, Mikami T, Kanie S, Sato M (2005) Free vibrations of uid-lled cylindrical shells on elastic foundations. J Thin-Walled Struct 43:174662 · doi:10.1016/j.tws.2005.07.005
[20] Gunawan H, Mikami T, Kanie S, Sato M (2006) Free vibration characteristics of cylindrical shells partially buried in elastic foundations. J Sound Vib 290:78593
[21] Bakhtiari-Nejad F, Bideleh SMM (2012) Nonlinear free vibration analysis of prestressed circular cylindrical shells on the winkler/pasternak foundation. Thin-Walled Struct 53:26-39 · doi:10.1016/j.tws.2011.12.015
[22] Boström A (2000) On wave equations for elastic rods. ZAMM J Appl Math Mech 80(4):245-251 · Zbl 0958.74029 · doi:10.1002/(SICI)1521-4001(200004)80:4<245::AID-ZAMM245>3.0.CO;2-P
[23] Firouz-Abadi RD, Rahmanian M, Amabili M (2013) Exact solutions for free vibrations and buckling of double tapered columns with elastic foundation and tip mass. J Vib Acoust 135:051017 · doi:10.1115/1.4023991
[24] Boström A, Johansson G, Olsson P (2001) On the rational derivation of a hierarchy of dynamic equations for a homogeneous, isotropic, elastic plate. Int J Solids Struct 38(15):2487-2501 · Zbl 1052.74529 · doi:10.1016/S0020-7683(00)00180-3
[25] Hägglund A, Folkow P (2008) Dynamic cylindrical shell equations by power series expansions. Int J Solids Struct 45(16):4509-4522 · Zbl 1169.74476 · doi:10.1016/j.ijsolstr.2008.03.030
[26] Okhovat R, Boström A (2014) Dynamic equations for an anisotropic cylindrical shell. In: Allemang R, De Clerck J, Niezrecki C, Wicks A (eds) Topics in modal analysis. Conference proceedings of the society for experimental mechanics series, vol 7, pp 731-741 · Zbl 0264.73089
[27] Firouz-Abadi R, Torkaman-Asadi M, Rahmanian M (2013) Whirling frequencies of thin spinning cylindrical shells surrounded by an elastic foundation. Acta Mech 224(4):881-892 · Zbl 1401.74120 · doi:10.1007/s00707-012-0802-1
[28] Markus S (1988) The mechanics of vibrations of cylindrical shells. Elsevier, New York · Zbl 0663.73034
[29] Hua L, Lam K (1998) Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method. Int J Mech Sci 40(5):443-459 · Zbl 0899.73270 · doi:10.1016/S0020-7403(97)00057-X
[30] Liew K, Ng T, Zhao X, Reddy J (2002) Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Comput Methods Appl Mech Eng 191(3738):4141-4157 · Zbl 1083.74609 · doi:10.1016/S0045-7825(02)00358-4
[31] Civalek Ö, Gürses M (2009) Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique. Int J Press Vessels Pip 86(10):677-683 · Zbl 1163.74022 · doi:10.1016/j.ijpvp.2009.03.011
[32] Dym C (1973) Some new results for the vibrations of circular cylinders. J Sound Vib 29(2):189-205 · Zbl 0264.73089 · doi:10.1016/S0022-460X(73)80134-8
[33] Chung H (1981) Free vibration analysis of circular cylindrical shells. J Sound Vib 74(3):331-350 · Zbl 0457.73042 · doi:10.1016/0022-460X(81)90303-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.