×

Escaping endpoints explode. (English) Zbl 1381.37051

The authors study escaping endpoints for complex exponential maps \(f_a: z\mapsto e^z+a\), \(a\in \mathbb{C}\), and also for certain subclasses of entire functions. For a large class of parameter values, they show that, under natural hypotheses, the point at infinity is an explosion point for the set of escaping endpoints for \(f_a\). This answers a question by D. Schleicher; earlier results in this direction have previously been obtained by J. C. Mayer [Ergodic Theory Dyn. Syst. 10, No. 1, 177–183 (1989; Zbl 0668.58032)].
The paper also contains many other results, including connectivity statements for finite-order entire functions and no-wandering-triangles type theorems for exponential maps.

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
54F15 Continua and generalizations
54G15 Pathological topological spaces

Citations:

Zbl 0668.58032

References:

[1] Aarts, J.M., Oversteegen, L.G.: The geometry of Julia sets. Trans. Am. Math. Soc. 338(2), 897-918 (1993) · Zbl 0809.54034 · doi:10.1090/S0002-9947-1993-1182980-3
[2] Barański, K.: Trees and hairs for some hyperbolic entire maps of finite order. Math. Z. 257(1), 33-59 (2007) · Zbl 1136.37024 · doi:10.1007/s00209-007-0114-7
[3] Barański, K., Jarque, X., Rempe, L.: Brushing the hairs of transcendental entire functions. Topol. Appl. 159(8), 2102-2114 (2012) · Zbl 1267.37041 · doi:10.1016/j.topol.2012.02.004
[4] Benini, A.M.: Triviality of fibers for Misiurewicz parameters in the exponential family. Conform. Geom. Dyn. 15(9), 133-151 (2011) · Zbl 1246.37069 · doi:10.1090/S1088-4173-2011-00227-X
[5] Benini, A.M., Lyubich, M.: Repelling periodic points and landing of rays for post-singularly bounded exponential maps. Annales de l’Institut Fourier 64(4), 1493-1520 (2014) · Zbl 1323.37029 · doi:10.5802/aif.2888
[6] Blokh, A., Oversteegen, L.: Wandering triangles exist. Comptes Rendus Mathematique 339(5), 365-370 (2004) · Zbl 1052.37036 · doi:10.1016/j.crma.2004.06.024
[7] Bodelón, C., Devaney, R.L., Hayes, M., Roberts, G., Goldberg, L.R., Hubbard, J.H.: Dynamical convergence of polynomials to the exponential. J. Differ. Equ. Appl. 6(3), 275-307 (2000) · Zbl 0976.37022 · doi:10.1080/10236190008808229
[8] Bula, W.D., Oversteegen, L.G.: A characterization of smooth Cantor bouquets. Proc. Am. Math. Soc. 108(2), 529-534 (1990) · Zbl 0679.54034 · doi:10.1090/S0002-9939-1990-0991691-9
[9] Charatonik, W.J.: The Lelek fan is unique. Houst. J. Math. 15(1), 27-34 (1989) · Zbl 0675.54034
[10] Devaney, R.L.: Cantor bouquets, explosions, and Knaster continua: dynamics of complex exponentials. Publ. Mat. 43(1), 27-54 (1999) · Zbl 0939.37028 · doi:10.5565/PUBLMAT_43199_02
[11] Devaney, R.L., Jarque, X.: Indecomposable continua in exponential dynamics. Conform. Geom. Dyn. 6, 1-12 (2002) · Zbl 1062.37035 · doi:10.1090/S1088-4173-02-00080-2
[12] Devaney, R.L., Krych, M.: Dynamics of \[{\rm exp}(z)\] exp(z). Ergod. Theory Dyn. Syst. 4(1), 35-52 (1984) · Zbl 0567.58025 · doi:10.1017/S014338570000225X
[13] Devaney, R.L., Tangerman, F.: Dynamics of entire functions near the essential singularity. Ergod. Theory Dyn. Syst. 6(4), 489-503 (1986) · Zbl 0612.58020 · doi:10.1017/S0143385700003655
[14] Eremenko, A.E., Lyubich, M.Y.: Dynamical properties of some classes of entire functions. Ann. Inst. Fourier Grenoble 42(4), 989-1020 (1992) · Zbl 0735.58031 · doi:10.5802/aif.1318
[15] Evdoridou, V.: Fatou’s web. Preprint (2015) arXiv:1510.07449 · Zbl 1351.37183
[16] Förster, M., Rempe, L., Schleicher, D.: Classification of escaping exponential maps. Proc. Am. Math. Soc. 136(2), 651-663 (2008) · Zbl 1134.37019 · doi:10.1090/S0002-9939-07-09073-9
[17] Kiwi, J.: Non-accessible critical points of Cremer polynomials. Ergod. Theory Dyn. Syst. 20(5), 1391-1403 (2000) · Zbl 0966.37015 · doi:10.1017/S0143385700000754
[18] Knaster, B., Kuratowski, C.: Sur les ensembles connexes. Fundamenta Mathematicae 2(1), 206-255 (1921) · JFM 48.0209.02
[19] Lelek, A.: On plane dendroids and their end points in the classical sense. Fund. Math. 49, 301-319 (1960/1961) · Zbl 0099.17701
[20] Mayer, J.C.: An explosion point for the set of endpoints of the Julia set of \[\lambda \exp (z)\] λexp(z). Ergod. Theory Dyn. Syst. 10(1), 177-183 (1990) · Zbl 0668.58032 · doi:10.1017/S0143385700005460
[21] Mihaljević-Brandt, H.: Topological dynamics of transcendental entire functions. Ph.D. thesis, University of Liverpool, Liverpool, UK, September 2009 · Zbl 1256.37001
[22] Mihaljević-Brandt, H.: A landing theorem for dynamic rays of geometrically finite entire functions. J. Lond. Math. Soc. (2) 81(3), 696-714 (2010) · Zbl 1221.37096
[23] Mihaljević-Brandt, H.: Semiconjugacies, pinched Cantor bouquets and hyperbolic orbifolds. Trans. Am. Math. Soc. 364(8), 4053-4083 (2012) · Zbl 1291.37063 · doi:10.1090/S0002-9947-2012-05541-3
[24] Nadler, Jr., S.B.: Continuum theory. An introduction. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 158. Marcel Dekker Inc., New York (1992) · Zbl 0757.54009
[25] Newman, M.H.A.: Elements of the Topology of Plane Sets of Points, 2nd edn. Cambridge University Press (1951) · Zbl 0045.44003
[26] Pérez-Marco, R.: Topology of Julia sets and hedgehogs. Université Paris-Sud (1994). Preprint · Zbl 1116.37033
[27] Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975). With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV · Zbl 0298.30014
[28] Rempe, L.: Dynamics of exponential maps. Doctoral thesis, Christian-Albrechts-Universität Kiel (2003). http://macau.uni-kiel.de/receive/dissertation_diss_00000781 · Zbl 1138.37025
[29] Rempe, L.: A landing theorem for periodic rays of exponential maps. Proc. Am. Math. Soc 134(9), 2639-2648 (2006) · Zbl 1099.37040 · doi:10.1090/S0002-9939-06-08287-6
[30] Rempe, L.: Topological dynamics of exponential maps on their escaping sets. Ergod. Theory Dyn. Syst. 26(6), 1939-1975 (2006) · Zbl 1138.37025 · doi:10.1017/S0143385706000435
[31] Rempe, L.: On nonlanding dynamic rays of exponential maps. Ann. Acad. Sci. Fenn. Math. 32(2), 353-369 (2007) · Zbl 1116.37033
[32] Rempe, L.: Rigidity of escaping dynamics for transcendental entire functions. Acta Math. 203(2), 235-267 (2009) · Zbl 1226.37027 · doi:10.1007/s11511-009-0042-y
[33] Rempe, L.: Connected escaping sets of exponential maps. Ann. Acad. Sci. Fenn. Math. 36(1), 71-80 (2011) · Zbl 1291.37070 · doi:10.5186/aasfm.2011.3604
[34] Rempe, L., Schleicher, D.: Bifurcation loci of exponential maps and quadratic polynomials: local connectivity, triviality of fibers, and density of hyperbolicity. In: Holomorphic Dynamics and Renormalization. Fields Institute Communications, vol. 53, pp. 177-196. American Mathematical Society, Providence (2008) · Zbl 1154.37352
[35] Rempe, L.; Schleicher, D.; Rippon, P. (ed.); Stallard, G. (ed.), Combinatorics of bifurcations in exponential parameter space, No. 348, 317-370 (2008), Cambridge · Zbl 1178.37043 · doi:10.1017/CBO9780511735233.014
[36] Rempe, L., Schleicher, D.: Bifurcations in the space of exponential maps. Invent. Math. 175(1), 103-135 (2009) · Zbl 1165.37014 · doi:10.1007/s00222-008-0147-5
[37] Rippon, P.J., Stallard, G.M.: Fast escaping points of entire functions. Proc. Lond. Math. Soc. (3) 105(4), 787-820 (2012) · Zbl 1291.30160
[38] Rottenfußer, G., Rückert, J., Rempe, L., Schleicher, D.: Dynamic rays of bounded-type entire functions. Ann. Math. (2) 173(1), 77-125 (2011) · Zbl 1232.37025
[39] Schleicher, D.: Attracting dynamics of exponential maps. Ann. Acad. Sci. Fenn. Math. 28, 3-34 (2003) · Zbl 1088.30016
[40] Schleicher, D.: The dynamical fine structure of iterated cosine maps and a dimension paradox. Duke Math. J. 136(2), 343-356 (2007) · Zbl 1114.37024 · doi:10.1215/S0012-7094-07-13625-1
[41] Schleicher, D.: On fibers and local connectivity of compact sets in \[\mathbb{C}C\]. IMS Preprint 1998/13b (2007). arXiv:math/9902154 · Zbl 1291.37063
[42] Schleicher, D., Zimmer, J.: Escaping points of exponential maps. J. Lond. Math. Soc. (2) 67(2), 380-400 (2003) · Zbl 1042.30012
[43] Schleicher, D., Zimmer, J.: Periodic points and dynamic rays of exponential maps. Ann. Acad. Sci. Fenn. Math. 28, 327-354 (2003) · Zbl 1088.30017
[44] Steen, L.A., Seebach, J.A.: Counterexamples in Topology. Dover Publications Inc, Mineola (1995) · Zbl 1245.54001
[45] Wilder, R.L.: A point set which has no true quasicomponents, and which becomes connected upon the addition of a single point. Bull. Am. Math. Soc. 33(4), 423-427 (1927) · JFM 53.0570.03 · doi:10.1090/S0002-9904-1927-04395-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.