×

Nonuniform exponential dichotomies and Lyapunov functions. (English) Zbl 1381.37039

Summary: For the nonautonomous dynamics defined by a sequence of bounded linear operators acting on an arbitrary Hilbert space, we obtain a characterization of the notion of a nonuniform exponential dichotomy in terms of quadratic Lyapunov sequences. We emphasize that, in sharp contrast with previous results, we consider the general case of possibly noninvertible linear operators, thus requiring only the invertibility along the unstable direction. As an application, we give a simple proof of the robustness of a nonuniform exponential dichotomy under sufficiently small linear perturbations.

MSC:

37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
34D09 Dichotomy, trichotomy of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Barreira, L., Dragičević, D., and Valls, C, Nonuniform Hyperbolicity and Admissibility, Adv. Nonlinear Stud., 2014, vol. 14, no. 3, pp. 791-811. · Zbl 1332.37024 · doi:10.1515/ans-2014-0315
[2] Barreira, L. and Pesin, Ya., Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge: Cambridge Univ. Press, 2007. · Zbl 0809.58030
[3] Barreira, L. and Valls, C., Stability of Nonautonomous Differential Equations, Lecture Notes in Math., vol. 1926, Berlin: Springer, 2008. · Zbl 1152.34003
[4] Barreira, L. and Valls, C, Lyapunov Sequences for Exponential Dichotomies, J. Differential Equations, 2009, vol. 246, no. 1, pp. 183-215. · Zbl 1153.37013 · doi:10.1016/j.jde.2008.06.009
[5] Barreira, L. and Valls, C, Quadratic Lyapunov Functions and Nonuniform Exponential Dichotomies, J. Differential Equations, 2009, vol. 246, no. 3, pp. 1235-1263. · Zbl 1165.34030 · doi:10.1016/j.jde.2008.06.008
[6] Barreira, L. and Valls, C, Noninvertible Cocycles: Robustness of Exponential Dichotomies, Discrete Contin. Dyn. Syst., 2012, vol. 32, no. 12, pp. 4111-4131. · Zbl 1268.47021 · doi:10.3934/dcds.2012.32.4111
[7] Bhatia, N.P. and Szegö, G.P., Stability Theory of Dynamical Systems, Grundlehren Math. Wiss., vol. 161, New York: Springer, 1970. · Zbl 0213.10904
[8] Chernov, N. and Markarian, R., Chaotic Billiards, Math. Surveys Monogr., vol. 127, Providence,R.I.: AMS, 2006. · Zbl 1101.37001
[9] Coppel, W.A., Dichotomies in Stability Theory, Lecture Notes in Math., vol. 629, Berlin: Springer, 1978. · Zbl 0376.34001 · doi:10.1007/BFb0067780
[10] Coppel, W.A, Dichotomies and Lyapunov Functions, J. Differential Equations, 1984, vol. 52, no. 1, pp. 58-65. · Zbl 0488.34042 · doi:10.1016/0022-0396(84)90134-7
[11] Daleckiĭ, Ju. and Kreĭn, M., Stability of Solutions of Differential Equations in Banach Space, Transl. Math. Monographs, vol. 43, Providence,R.I.: AMS, 1974. · Zbl 1406.34082
[12] Dragičević, D. and Preda, C, Lyapunov Theorems for Exponential Dichotomies in Hilbert Spaces, Internat. J. Math., 2016, vol. 27, no. 4, 1650033, 13 pp. · Zbl 1406.34082 · doi:10.1142/S0129167X16500336
[13] Hahn, W., Stability of Motion, Grundlehren Math. Wiss., vol. 138, New York: Springer, 1967. · Zbl 0189.38503
[14] Hale, J., Theory of Functional Differential Equations, 2nd ed., Appl. Math. Sci., vol. 3, New York: Springer, 1977. · Zbl 0352.34001
[15] Hale, J., Asymptotic Behavior of Dissipative Systems, Math. Surveys and Monogr., vol. 25, Providence, R.I.: AMS, 1988. · Zbl 0642.58013
[16] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, New York: Springer, 1981. · Zbl 0456.35001
[17] Katok, A, Infinitesimal Lyapunov Functions, Invariant Cone Families and Stochastic Properties of Smooth Dynamical Systems, Ergodic Theory Dynam. Systems, 1994, vol. 14, no. 4, pp. 757-785. · Zbl 0816.58029
[18] Katok, A., Strelcyn, J.-M., Ledrappier, F., and Przytycki, F., Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Math., vol. 1222, New York: Springer, 1986. · Zbl 1268.47021
[19] La Salle, J. and Lefschetz, S., Stability by Liapunov’s Direct Method, with Applications, Math. Sci. Eng., vol. 4, Amsterdam: Elsevier, 1961. · Zbl 0098.06102
[20] Lerman, L.M. and Shil’nikov, L.P, Homoclinic Structures in Infinite-Dimensional Systems, Siberian Math. J., 1988, vol. 29, no. 3, pp. 408-417; see also: Sibirsk. Mat. Zh., 1988 vol. 29, no. 3, pp. 92-103, 220. · Zbl 0688.58031 · doi:10.1007/BF00969650
[21] Lerman, L.M. and Shil’nikov, L.P, Homoclinical Structures in Nonautonomous Systems: Nonautonomous Chaos, Chaos, 1992, vol. 2, no. 3, pp. 447-454. · Zbl 1055.37552 · doi:10.1063/1.165887
[22] Lewowicz, J, Lyapunov Functions and Topological Stability, J. Differential Equations, 1980, vol. 38, no. 2, pp. 192-209. · Zbl 0418.58012 · doi:10.1016/0022-0396(80)90004-2
[23] Lewowicz, J., Lyapunov Functions and Stability of Geodesic Flows, in Geometric Dynamics (Rio de Janeiro, 1981), J. Palis (Ed.), Lecture Notes in Math., vol. 1007, Berlin: Springer, 1983, pp. 463-479. · Zbl 0688.58031
[24] Maĭzel’, A. D, On the Stability of Solutions of Systems of Differential Equations, Trudy Ural. Politekh. Inst., 1954, vol. 51, pp. 20-50 (Russian).
[25] Markarian, R., Non-Uniformly Hyperbolic Billiards, Ann. Fac. Sci. Toulouse Math. (6), 1994, vol. 3, no. 2, pp. 223-257. · Zbl 0809.58030 · doi:10.5802/afst.779
[26] Papaschinopoulos, G, Dichotomies in Terms of Lyapunov Functions for Linear Difference Equations, J. Math. Anal. Appl., 1990, vol. 152, no. 2, pp. 524-535. · Zbl 0712.39010 · doi:10.1016/0022-247X(90)90082-Q
[27] Sell, G.R. and You, Yu., Dynamics of Evolutionary Equations, Appl. Math. Sci., vol. 143, New York: Springer, 2002. · Zbl 1254.37002
[28] Wojtkowski, M, Invariant Families of Cones and Lyapunov Exponents, Ergodic Theory Dynam. Systems, 1985, vol. 5, no. 1, pp. 145-161. · Zbl 0578.58033 · doi:10.1017/S0143385700002807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.