×

Positive Green’s function and triple positive solutions of a second-order impulsive differential equation with integral boundary conditions and a delayed argument. (English) Zbl 1381.34045

Summary: In this paper, we first establish the expression of positive Green’s function for a second-order impulsive differential equation with integral boundary conditions and a delayed argument. Furthermore, applying Legget-William’s fixed point theorem and Hölder’s inequality, we obtain the existence results of at least three positive solutions under three cases: \(p=1\), \(1< p<+\infty\), and \(p=+\infty\). We discuss our problem with impulsive effects and a delayed argument. In this case, our results cover second-order boundary value problems without impulsive effects and delayed arguments and are compared with some recent results. Finally, we give an example to illustrate our main results.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B27 Green’s functions for ordinary differential equations
34B37 Boundary value problems with impulses for ordinary differential equations
34K10 Boundary value problems for functional-differential equations

References:

[1] Kuang, Y: Delay Differential Equation with Application in Population Dynamics. Academic Press, Boston (1993) · Zbl 0777.34002
[2] Yan, J: Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model. J. Math. Anal. Appl. 279, 111-120 (2003) · Zbl 1032.34077 · doi:10.1016/S0022-247X(02)00613-3
[3] Gyöi, I, Ladas, G: Oscillation Theorem of Delay Differential Equations with Applications. Clarendon Press, Oxford (1991) · Zbl 0780.34048
[4] Lalli, BS, Zhang, B: On a periodic delay population model. Q. Appl. Math. 52, 35-42 (1994) · Zbl 0788.92022
[5] Gopalsamy, K, Kulenović, MRS, Ladas, G: Environmental periodicity and time delays in a food-limited population model. J. Math. Anal. Appl. 147, 545-555 (1990) · Zbl 0701.92021 · doi:10.1016/0022-247X(90)90369-Q
[6] Zhang, X, Feng, M: Transformation technique, fixed point theorem and positive solutions for second-order impulsive differential equations with deviating arguments. Adv. Differ. Equ. 2014, 312 (2014) · Zbl 1347.34103 · doi:10.1186/1687-1847-2014-312
[7] Zhang, X, Feng, M: Deviating arguments, impulsive effects, and positive solutions for second order singular p-Laplacian equations. Adv. Differ. Equ. 2015(1), 127 (2015) · Zbl 1422.34114 · doi:10.1186/s13662-015-0472-0
[8] Nieto, JJ, López, RR: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J. Math. Anal. Appl. 318, 593-610 (2006) · Zbl 1101.34051 · doi:10.1016/j.jmaa.2005.06.014
[9] Yan, J, Shen, J: Impulsive stabilization of functional differential equations by Lyapunov-Razumikhin functions. Nonlinear Anal. 37, 245-255 (1999) · Zbl 0951.34049 · doi:10.1016/S0362-546X(98)00045-5
[10] Li, J, Shen, J: New comparison results for impulsive functional differential equations. Appl. Math. Lett. 23, 487-493 (2010) · Zbl 1200.34098 · doi:10.1016/j.aml.2009.12.010
[11] Feng, M, Qiu, J: Multi-parameter fourth order impulsive integral boundary value problems with one-dimensional m-Laplacian and deviating arguments. J. Inequal. Appl. 2015(1), 64 (2015) · Zbl 1316.34068 · doi:10.1186/s13660-015-0587-6
[12] Liu, YS: Periodic boundary value problems for first order functional differential equations with impulse. J. Comput. Appl. Math. 223, 27-39 (2009) · Zbl 1162.34050 · doi:10.1016/j.cam.2007.12.015
[13] Liu, YJ: Further results on periodic boundary value problems for nonlinear first-order impulsive functional differential equations. J. Math. Anal. Appl. 327, 435-452 (2007) · Zbl 1119.34062 · doi:10.1016/j.jmaa.2006.01.027
[14] He, Z, Yu, J: Periodic boundary value problem for first-order impulsive functional differential equations. J. Math. Anal. Appl. 272, 67-78 (2002) · Zbl 1016.34023 · doi:10.1016/S0022-247X(02)00133-6
[15] Ding, W, Han, M, Mi, J: Periodic boundary value problem for the second-order impulsive functional differential equations. Comput. Math. Appl. 50, 491-507 (2005) · Zbl 1095.34042 · doi:10.1016/j.camwa.2005.03.010
[16] Jankowski, T: Existence of solutions of boundary value problems for differential equations with delayed arguments. J. Comput. Appl. Math. 156, 239-252 (2003) · Zbl 1048.34107 · doi:10.1016/S0377-0427(02)00916-0
[17] Jankowski, T: Advanced differential equations with nonlinear boundary conditions. J. Math. Anal. Appl. 304, 490-503 (2005) · Zbl 1092.34032 · doi:10.1016/j.jmaa.2004.09.059
[18] Jankowski, T: Nonnegative solutions to nonlocal boundary value problems for systems of second-order differential equations dependent on the first-order derivatives. Nonlinear Anal. 87, 83-101 (2013) · Zbl 1286.34096 · doi:10.1016/j.na.2013.04.004
[19] Jiang, D, Wei, J: Monotone method for first- and second-order periodic boundary value problems and periodic solutions of functional differential equations. Nonlinear Anal. 50, 885-898 (2002) · Zbl 1014.34049 · doi:10.1016/S0362-546X(01)00782-9
[20] Wang, G: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments. J. Comput. Appl. Math. 236, 2425-2430 (2012) · Zbl 1238.65077 · doi:10.1016/j.cam.2011.12.001
[21] Wang, G, Zhang, L, Song, G: Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. 74, 974-982 (2011) · Zbl 1223.34091 · doi:10.1016/j.na.2010.09.054
[22] Hu, C, Liu, B, Xie, S: Monotone iterative solutions for nonlinear boundary value problems of fractional differential equation with deviating arguments. Appl. Math. Comput. 222, 72-81 (2013) · Zbl 1333.34117 · doi:10.1016/j.amc.2013.07.048
[23] Jankowski, T: Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments. Appl. Math. Comput. 197, 179-189 (2008) · Zbl 1145.34355 · doi:10.1016/j.amc.2007.07.081
[24] Zhou, J, Feng, M: Triple positive solutions for a second order m-point boundary value problem with a delayed argument. Bound. Value Probl. 2015, 178 (2015) · Zbl 1342.34089 · doi:10.1186/s13661-015-0436-z
[25] Feng, M, Ji, D, Ge, W: Positive solutions for a class of boundary value problem with integral boundary conditions in Banach spaces. J. Comput. Appl. Math. 222, 351-363 (2008) · Zbl 1158.34336 · doi:10.1016/j.cam.2007.11.003
[26] Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985) · Zbl 0559.47040 · doi:10.1007/978-3-662-00547-7
[27] Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cons. Academic Press, New York (1998)
[28] Leggett, R, Williams, L: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673-688 (1979) · Zbl 0421.47033 · doi:10.1512/iumj.1979.28.28046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.