×

\(t\)-generalized supplemented modules. (English) Zbl 1381.16004

Ukr. Math. J. 67, No. 11, 1678-1686 (2016) and Ukr. Mat. Zh. 67, No. 11, 1491-1497 (2015).
Summary: In the present paper, \(t\)-generalized \(\otimes\)-supplemented modules are defined starting from the generalized supplemented modules. In addition, we present examples separating the \(t\)-generalized supplemented modules, supplemented modules, and generalized \(\otimes\)-supplemented modules and also show the equality of these modules for projective and finitely generated modules. Moreover, we define cofinitely \(t\)-generalized supplemented modules and give the characterization of these modules. Furthermore, for any ring \(R\), we show that any finite direct sum of \(t\)-generalized supplemented \(R\)-modules is \(t\)-generalized supplemented and that any direct sum of cofinitely \(t\)-generalized supplemented \(R\)-modules is a cofinitely \(t\)-generalized supplemented module.

MSC:

16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16D80 Other classes of modules and ideals in associative algebras
Full Text: DOI

References:

[1] R. Alizade, G. Bilhan, and P. F. Smith, “Modules whose maximal submodules have supplements,” Comm. Algebra, 29, No. 6, 2389-2405 (2001). · Zbl 0989.16001 · doi:10.1081/AGB-100002396
[2] E. Büyükaşık and C. Lomp, “On a recent generalization of semiperfect rings,” Bull. Austral. Math. Soc., 78, No. 2, 317-325 (2008). · Zbl 1159.16015 · doi:10.1017/S0004972708000774
[3] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules. Frontiers in Mathematics, Birkhäuser, Basel (2006). · Zbl 1102.16001
[4] H. Çalışıcı and E. Türkmen, “Generalized ⊕-supplemented modules,” Algebra Discrete Math., 10, 10-18 (2010). · Zbl 1212.16013
[5] Ş. Ecevit, M. T. Koşan, and R. Tribak, “Rad-⊕-supplemented modules and cofinitely Rad-⊕-supplemented modules,” Algebra Colloq., 19, No. 4, 637-648 (2012). · Zbl 1288.16006
[6] A. Idelhadj and R. Tribak, “On some properties of ⊕-supplemented modules,” Int. J. Math. Sci., 69, 4373-4387 (2003). · Zbl 1066.16001 · doi:10.1155/S016117120320346X
[7] F. Kasch, “Modules and rings,” London Math. Soc. Monographs, Acad. Press Inc., London, 17 (1982). · Zbl 0523.16001
[8] S. H. Mohamed and B. J. Müller, “Continuous and discrete modules,” London Math. Soc. Lect. Note Ser., 147 (1990). · Zbl 0701.16001
[9] Y. Talebi, A. R. M. Hamzekolaei, and D. K. Tütüncü, “On Rad ⊕-supplemented modules,” Hadronic J., 32, 505-512 (2009). · Zbl 1208.16010
[10] Y. Talebi and A. Mahmoudi, “On Rad ⊕-supplemented modules,” Thai J. Math., 9, No. 2, 373-381 (2011). · Zbl 1264.16003
[11] Y. Wang and N. Ding, “Generalized supplemented modules,” Taiwan. J. Math., 10, No. 6, 1589-1601 (2006). · Zbl 1122.16003
[12] R. Wisbauer, Foundations of Module and Ring Theory, Gordon & Breach, Philadelphia (1991). · Zbl 0746.16001
[13] W. Xue, “Characterizations of semiperfect and perfect rings,” Publ. Mat., 40, No. 1, 115-125 (1996). · Zbl 0863.16014 · doi:10.5565/PUBLMAT_40196_08
[14] H. Zöschinger, “Komplementierte moduln über Dedekindringen,” J. Algebra, 29, 42-56 (1974). · Zbl 0277.13008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.