×

Zorich conjecture for hyperelliptic Rauzy-Veech groups. (English) Zbl 1381.05088

Summary: We describe the structure of hyperelliptic Rauzy diagrams and hyperelliptic Rauzy-Veech groups. In particular, this provides a solution of the hyperelliptic cases of a conjecture of Zorich on the Zariski closure of Rauzy-Veech groups.

MSC:

05E15 Combinatorial aspects of groups and algebras (MSC2010)
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37A25 Ergodicity, mixing, rates of mixing

References:

[1] A’Campo, N.: Tresses, monodromie et le groupe symplectique. Comment. Math. Helv. 54(2), 318-327 (1979) · Zbl 0441.32004 · doi:10.1007/BF02566275
[2] Avila, A., Matheus, C., Yoccoz, J.-C.: On the Kontsevich-Zorich cocycle for the Veech-McMullen family of symmetric translation surfaces (in preparation) · Zbl 1426.37030
[3] Avila, A., Viana, M.: Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture. Acta Math. 198, 1-56 (2007) · Zbl 1143.37001 · doi:10.1007/s11511-007-0012-1
[4] Benoist, Y.: Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 7, 1-47 (1997) · Zbl 0947.22003 · doi:10.1007/PL00001613
[5] Eskin, A., Filip, S., Wright, A.: The algebraic hull of the Kontsevich-Zorich cocycle (preprint) (2017). arXiv:1702.02074 · Zbl 1398.32015
[6] Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton, NJ (2012). ISBN: 978-0-691-14794-9 · Zbl 1245.57002
[7] Filip, S.: Zero Lyapunov exponents and monodromy of the Kontsevich-Zorich cocycle. Duke Math. J. 166(4), 657-706 (2017) · Zbl 1370.37066 · doi:10.1215/00127094-3715806
[8] Forni, G.: Deviation of Ergodic averages for area-preserving flows on surfaces of higher genus. Ann. Math. 155(1), 1-103 (2002) · Zbl 1034.37003 · doi:10.2307/3062150
[9] Matheus, C., Möller, M., Yoccoz, J.-C.: A criterion for the simplicity of the Lyapunov exponents of square-tiled surfaces. Invent. Math. 202(1), 333-425 (2015) · Zbl 1364.37081 · doi:10.1007/s00222-014-0565-5
[10] Looijenga, E., Mondello, G.: The fine structure of the moduli space of abelian differentials in genus 3. Geom. Dedicata 169, 109-128 (2014) · Zbl 1308.14034 · doi:10.1007/s10711-013-9845-2
[11] Rauzy, G.: Échanges d’intervalles et transformations induites. Acta Arith. 34(4), 315-328 (1979) · Zbl 0414.28018 · doi:10.4064/aa-34-4-315-328
[12] Witte-Morris, D.: Ratner’s theorems on unipotent flows. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2005) · Zbl 1069.22003
[13] Yoccoz, J.-C.: Interval exchange maps and translation surfaces. Homog. Flows Moduli Spaces Arith. 10, 1-69, Clay Math. Proc. (2010) · Zbl 1248.37038
[14] Zorich, A.: How do the leaves of a closed 1-form wind around a surface? Pseudoperiodic topology, 135-178. American Mathematical Society Translational Series, vol. 2, p. 197. American Mathematical Society, Providence (1999) · Zbl 0976.37012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.