×

On sampling rates in simulation-based recursions. (English) Zbl 1380.93168

Summary: We consider the context of “simulation-based recursions,” that is, recursions that involve quantities needing to be estimated using a stochastic simulation. Examples include stochastic adaptations of fixed-point and gradient descent recursions obtained by replacing function and derivative values appearing within the recursion by their Monte Carlo counterparts. The primary motivating settings are simulation optimization and stochastic root finding problems, where the low point and the zero of a function are sought, respectively, with only Monte Carlo estimates of the functions appearing within the problem. We ask how much Monte Carlo sampling needs to be performed within simulation-based recursions in order that the resulting iterates remain consistent and, more importantly, efficient, where “efficient” implies convergence at the fastest possible rate. Answering these questions involves trading off two types of error inherent in the iterates: the deterministic error due to recursion and the “stochastic” error due to sampling. As we demonstrate through a characterization of the relationship between sample sizing and convergence rates, efficiency and consistency are intimately coupled with the speed of the underlying recursion, with faster recursions yielding a wider regime of “optimal” sampling rates. The implications of our results for practical implementation are immediate since they provide specific guidance on optimal simulation expenditure within a variety of stochastic recursions.

MSC:

93C57 Sampled-data control/observation systems
65C05 Monte Carlo methods
62D05 Sampling theory, sample surveys
90C15 Stochastic programming
68Q32 Computational learning theory

References:

[1] O. Alagoz, A. J. Schaefer, and M. S. Roberts, {\it Optimization in organ allocation}, in Handbook of Optimization in Medicine, P. Pardalos and E. Romeijn, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2009. · Zbl 1341.92024
[2] S. Asmussen and P. W. Glynn, {\it Stochastic Simulation: Algorithms and Analysis}, Springer, New York, 2007. · Zbl 1126.65001
[3] J. Atlason, M. A. Epelman, and S. G. Henderson, {\it Optimizing call center staffing using simulation and analytic center cutting plane methods}, Management Sci., 54 (2008), pp. 295-309. · Zbl 1232.90266
[4] D. Bertsekas, {\it Nonlinear Programming}, Athena Scientific, Nashua, NH, 1995. · Zbl 0935.90037
[5] P. Billingsley, {\it Probability and Measure}, Wiley, New York, 1995. · Zbl 0822.60002
[6] V. S. Borkar, {\it Stochastic Approximation: A Dynamical Systems Viewpoint}, Cambridge University Press, Cambridge, UK, 2008. · Zbl 1181.62119
[7] L. Bottou and O. Bosquet, {\it The trade-offs of large scale learning}, in Advances in Neural Information Processing Systems 20, J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, eds., Curran Associates, Red Hook, NY, 2008, pp. 161-168.
[8] L. Bottou, F. Curtis, and J. Nocedal, {\it Optimization methods for large-scale machine learning}, preprint, , 2016. · Zbl 1397.65085
[9] S. Boyd, {\it Convex Optimization}, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1058.90049
[10] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, {\it Sample size selection for optimization methods for machine learning}, Math. Program. Ser. B, 134 (2012), pp. 127-155. · Zbl 1252.49044
[11] M. Chu, Y. Zinchenko, S. G. Henderson, and M. B. Sharpe, {\it Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty}, Phys. Med. Biol., 50 (2005), pp. 5463-5477.
[12] A. R. Conn, K. Scheinberg, and L. N. Vicente, {\it Introduction to Derivative-Free Optimization}, MOS-SIAM Ser. Optim. 8, SIAM, Philadelphia, 2009, . · Zbl 1163.49001
[13] G. Deng and M. C. Ferris, {\it Adaptation of the UOBQYA algorithm for noisy functions}, in Proceedings of the 2006 Winter Simulation Conference, L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds., IEEE, Piscataway, NJ, 2006, pp. 312-319.
[14] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z Toroczkai, and N. Wang, {\it Modelling disease outbreaks in realistic urban social networks}, Nature, 429 (2004), pp. 180-184.
[15] M. P. Friedlander and M. Schmidt, {\it Hybrid deterministic-stochastic methods for data fitting}, SIAM J. Sci. Comput., 34 (2012), pp. A1380-A1405, . · Zbl 1262.90090
[16] S. Ghadimi and G. Lan, {\it Stochastic first- and zeroth-order methods for nonconvex stochastic programming}, SIAM J. Optim., 23 (2013), pp. 2341-2368, . · Zbl 1295.90026
[17] S. G. Henderson and B. L. Nelson, eds., {\it Handbooks in Operations Research and Management Science: Simulation}, vol. 13, Elsevier, New York, 2006. · Zbl 1170.90300
[18] Y. T. Herer, M. Tzur, and E. Yucesan, {\it The multilocation transshipment problem}, IIE Trans., 38 (2006), pp. 185-200.
[19] T. Homem-de-Mello, A. Shapiro, and M. L. Spearman, {\it Finding optimal release times using simulation based optimization}, Management Sci., 45 (1999), pp. 86-102. · Zbl 1231.91275
[20] J. Kiefer and J. Wolfowitz, {\it Stochastic estimation of the maximum of a regression function}, Ann. Math. Statist., 23 (1952), pp. 462-466. · Zbl 0049.36601
[21] A. M. Law, {\it Simulation Modeling and Analysis}, McGraw-Hill, New York, 2007.
[22] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, {\it Robust stochastic approximation approach to stochastic programming}, SIAM J. Optim., 19 (2009), pp. 1574-1609, . · Zbl 1189.90109
[23] Y. Nesterov, {\it Introductory Lectures on Convex Optimization: A Basic Course}, Springer, New York, 2004. · Zbl 1086.90045
[24] C. Osorio and M. Bierlaire, {\it A simulation-based optimization framework for urban transportation problems}, Oper. Res., 61 (2013), pp. 1333-1345. · Zbl 1291.90058
[25] R. Pasupathy, {\it On choosing parameters in retrospective-approximation algorithms for stochastic root finding and simulation optimization}, Oper. Res., 58 (2010), pp. 889-901. · Zbl 1228.90069
[26] R. Pasupathy and S. Ghosh, {\it Simulation optimization: A concise overview and implementation guide}, in 2013 Tutorials in Operations Research: Theory Driven by Influential Applications, INFORMS Tutorials, INFORMS, Catonsville, MD, 2013, pp. 122-150.
[27] R. Pasupathy and S. Kim, {\it The stochastic root-finding problem: Overview, solutions, and open questions}, ACM TOMACS, 21(3), 2011. · Zbl 1386.65054
[28] R. Pasupathy and B. W. Schmeiser, {\it Retrospective-approximation algorithms for multidimensional stochastic root-finding problems}, ACM Trans. Model. Comput. Simul., 19 (2009), 5. · Zbl 1390.65023
[29] R. Pasupathy and B. W. Schmeiser, {\it DARTS–dynamic adaptive random target shooting}, in Proceedings of the 2010 Winter Simulation Conference, B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds., IEEE, Piscataway, NJ, 2010.
[30] B. Polyak, {\it Introduction to Optimization}, Optimization Software, New York, NY, 1987. · Zbl 0625.62093
[31] B. T. Polyak and A. B. Juditsky, {\it Acceleration of stochastic approximation by averaging}, SIAM J. Control Optim., 30 (1992), pp. 838-855, . · Zbl 0762.62022
[32] R. J. Serfling, {\it Approximation Theorems of Mathematical Statistics}, John Wiley & Sons, New York, 1980. · Zbl 0538.62002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.