×

Nonfragile finite-time extended dissipative control for a class of uncertain switched neutral systems. (English) Zbl 1380.93089

Summary: This paper is concerned with finite-time extended dissipative analysis and nonfragile control for a class of uncertain switched neutral systems with time delay, and the controller is assumed to have either additive or multiplicative form. By employing the average dwell-time and linear matrix inequality technique, sufficient conditions for finite-time boundedness of the switched neutral system are provided. Then, finite-time extended dissipative performance for the switched neutral system is addressed, where we can solve \(H_{\infty}\), \(L_2 - L_{\infty}\), Passivity, and \((Q, S, R)\)-dissipativity performance in a unified framework based on the concept of extended dissipativity. Furthermore, nonfragile state feedback controllers are proposed to guarantee that the closed-loop system is finite-time bounded with extended dissipative performance. Finally, numerical examples are given to demonstrate the effectiveness of the proposed method.

MSC:

93B35 Sensitivity (robustness)
93B36 \(H^\infty\)-control
93C15 Control/observation systems governed by ordinary differential equations
34K40 Neutral functional-differential equations
93C41 Control/observation systems with incomplete information
93B52 Feedback control

References:

[1] Wang, S.; Shi, T.; Zhang, L.; Jasra, A.; Zeng, M., Extended finite-time \(H_\infty\) control for uncertain switched linear neutral systems with time-varying delays, Neurocomputing, 152, 377-387 (2015) · doi:10.1016/j.neucom.2014.10.047
[2] Zhao, X.; Yin, Y.; Zheng, X., State-dependent switching control of switched positive fractional-order systems, ISA Transactions, 103-108 (2016) · doi:10.1016/j.isatra.2016.01.011
[3] Zhao, X.; Shi, P.; Zhang, L., Asynchronously switched control of a class of slowly switched linear systems, Systems & Control Letters, 61, 12, 1151-1156 (2012) · Zbl 1255.93119 · doi:10.1016/j.sysconle.2012.08.010
[4] Zhang, L.; Zhuang, S.; Braatz, R. D., Switched model predictive control of switched linear systems: feasibility, stability and robustness, Automatica, 67, 8-21 (2016) · Zbl 1335.93041 · doi:10.1016/j.automatica.2016.01.010
[5] Zhao, X.; Liu, X.; Yin, S.; Li, H., Improved results on stability of continuous-time switched positive linear systems, Automatica, 50, 2, 614-621 (2014) · Zbl 1364.93583 · doi:10.1016/j.automatica.2013.11.039
[6] Xia, J.; Park, J. H.; Zeng, H., Improved delay-dependent robust stability analysis for neutral-type uncertain neural networks with Markovian jumping parameters and time-varying delays, Neurocomputing, 149, 1198-1205 (2015) · doi:10.1016/j.neucom.2014.09.008
[7] Xia, J.; Park, J. H.; Zeng, H.; Shen, H., Delay-difference-dependent robust exponential stability for uncertain stochastic neural networks with multiple delays, Neurocomputing, 140, 210-218 (2014) · doi:10.1016/j.neucom.2014.03.022
[8] Wang, Z.; Huang, X.; Zhou, J., A numerical method for delayed fractional-order differential equations: based on G-L definition, Applied Mathematics & Information Sciences, 7, 2L, 525-529 (2013) · doi:10.12785/amis/072L22
[9] Wang, Z.; Huang, X.; Shi, G., Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay, Computers & Mathematics with Applications, 62, 3, 1531-1539 (2011) · Zbl 1228.35253 · doi:10.1016/j.camwa.2011.04.057
[10] Zhang, Y.; Liu, X.; Zhu, H.; Zhong, S., Stability analysis and control synthesis for a class of switched neutral systems, Applied Mathematics and Computation, 190, 2, 1258-1266 (2007) · Zbl 1117.93062 · doi:10.1016/j.amc.2007.02.011
[11] Zhang, D.; Yu, L., Exponential stability analysis for neutral switched systems with interval time-varying mixed delays and nonlinear perturbations, Nonlinear Analysis: Hybrid Systems, 6, 2, 775-786 (2012) · Zbl 1238.93090 · doi:10.1016/j.nahs.2011.10.002
[12] Lien, C.-H.; Yu, K.-W.; Chung, Y.-J.; Lin, Y.-F.; Chung, L.-Y.; Chen, J.-D., Exponential stability analysis for uncertain switched neutral systems with interval-time-varying state delay, Nonlinear Analysis: Hybrid Systems, 3, 3, 334-342 (2009) · Zbl 1192.34085 · doi:10.1016/j.nahs.2009.02.010
[13] Zhang, Y.; Zhu, H.; Liu, X.; Zhong, S., Reliable \(H_\infty\) control for a class of switched neutral systems, Complex System and Applications: Modeling, Control and Simulations, 14, 1724-1729 (2007)
[14] Wang, Y.-E.; Zhao, J.; Jiang, B., Stabilization of a class of switched linear neutral systems under asynchronous switching, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 58, 8, 2114-2119 (2013) · Zbl 1369.93511 · doi:10.1109/TAC.2013.2250076
[15] Zhang, Z.; Zhang, Z.; Zhang, H., Finite-time stability analysis and stabilization for uncertain continuous-time system with time-varying delay, Journal of The Franklin Institute, 352, 3, 1296-1317 (2015) · Zbl 1307.93337 · doi:10.1016/j.jfranklin.2014.12.022
[16] Liu, H.; Zhao, X., Finite-time \(H_\infty\) control of switched systems with mode-dependent average dwell time, Journal of The Franklin Institute, 351, 3, 1301-1315 (2014) · Zbl 1395.93278 · doi:10.1016/j.jfranklin.2013.10.020
[17] Lin, X.; Du, H.; Li, S., Finite-time boundedness and \(L_2\)-gain analysis for switched delay systems with norm-bounded disturbance, Applied Mathematics and Computation, 217, 12, 5982-5993 (2011) · Zbl 1218.34082 · doi:10.1016/j.amc.2010.12.032
[18] He, S.; Liu, F., Stochastic finite-time boundedness of Markovian jumping neural network with uncertain transition probabilities, Applied Mathematical Modelling, 35, 6, 2631-2638 (2011) · Zbl 1219.93143 · doi:10.1016/j.apm.2010.11.050
[19] Liu, H.; Shen, Y.; Zhao, X., Finite-time stabilization and boundedness of switched linear system under state-dependent switching, Journal of The Franklin Institute, 350, 3, 541-555 (2013) · Zbl 1268.93078 · doi:10.1016/j.jfranklin.2012.12.014
[20] Xiang, Z.; Sun, Y.-N.; Mahmoud, M. S., Robust finite-time \(H_\infty\) control for a class of uncertain switched neutral systems, Communications in Nonlinear Science and Numerical Simulation, 17, 4, 1766-1778 (2012) · Zbl 1239.93036 · doi:10.1016/j.cnsns.2011.09.022
[21] Mathiyalagan, K.; Park, J. H.; Jung, H. Y.; Sakthivel, R., Non-fragile observer-based \(H_\infty\) control for discrete-time systems using passivity theory, Circuits, Systems and Signal Processing, 34, 8, 2499-2516 (2015) · Zbl 1341.93027 · doi:10.1007/s00034-015-9984-9
[22] Wu, Y.-Q.; Su, H.; Lu, R.; Wu, Z.-G.; Shu, Z., Passivity-based non-fragile control for Markovian jump systems with aperiodic sampling, Systems & Control Letters, 84, 35-43 (2015) · Zbl 1326.93082 · doi:10.1016/j.sysconle.2015.08.001
[23] Yue, D.; Lam, J., Non-fragile guaranteed cost control for uncertain descriptor systems with time-varying state and input delays, Optimal Control Applications and Methods, 26, 2, 85-105 (2005) · doi:10.1002/oca.753
[24] Yang, G.-H.; Wang, J. L., Non-fragile \(H_\infty\) control for linear systems with multiplicative controller gain variations, Automatica, 37, 5, 727-737 (2001) · Zbl 0990.93031 · doi:10.1016/S0005-1098(01)00008-5
[25] Zhang, B.; Zheng, W. X.; Xu, S., Filtering of Markovian jump delay systems based on a new performance index, IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 5, 1250-1263 (2013) · Zbl 1468.94288 · doi:10.1109/TCSI.2013.2246213
[26] Xiao, J.; Li, Y.; Zhong, S.; Xu, F., Extended dissipative state estimation for memristive neural networks with time-varying delay, ISA Transactions, 64, 113-128 (2016) · doi:10.1016/j.isatra.2016.05.007
[27] Yang, H.; Shu, L.; Zhong, S.; Wang, X., Extended dissipative exponential synchronization of complex dynamical systems with coupling delay and sampled-data control, Journal of The Franklin Institute, 353, 8, 1829-1847 (2016) · Zbl 1347.93171 · doi:10.1016/j.jfranklin.2016.03.003
[28] Wei, H.; Li, R.; Chen, C.; Tu, Z., Extended dissipative analysis for memristive neural networks with two additive time-varying delay components, Neurocomputing, 216, 429-438 (2016) · doi:10.1016/j.neucom.2016.07.054
[29] Shen, H.; Zhu, Y.; Zhang, L.; Park, J. H., Extended dissipative state estimation for Markov jump neural networks with unreliable links, IEEE Transactions on Neural Networks and Learning Systems, 28, 2, 346-358 (2017) · doi:10.1109/TNNLS.2015.2511196
[30] Lee, T. H.; Park, M.-J.; Park, J. H.; Kwon, O.-M.; Lee, S.-M., Extended dissipative analysis for neural networks with time-varying delays, IEEE Transactions on Neural Networks and Learning Systems, 25, 10, 1936-1941 (2014) · doi:10.1109/TNNLS.2013.2296514
[31] Lakshmanan, S.; Park, J. H.; Jung, H. Y.; Kwon, O. M.; Rakkiyappan, R., A delay partitioning approach to delay-dependent stability analysis for neutral type neural networks with discrete and distributed delays, Neurocomputing, 111, 81-89 (2013) · doi:10.1016/j.neucom.2012.12.016
[32] Xie, L., Output feedback \(H_\infty\) control of systems with parameter uncertainty, International Journal of Control, 63, 4, 741-750 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866
[33] Wang, Y. Y.; Xie, L.; de Souza, C. E., Robust control of a class of uncertain nonlinear systems, Systems & Control Letters, 19, 2, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[34] Cheng, J.; Park, J. H.; Liu, Y.; Liu, Z.; Tang, L., Finite-time \(H_\infty\) fuzzy control of nonlinear Markovian jump delayed systems with partly uncertain transition descriptions, Fuzzy Sets and Systems, 314, 99-115 (2017) · Zbl 1368.93147 · doi:10.1016/j.fss.2016.06.007
[35] Cheng, J.; Park, J. H.; Zhang, L.; Zhu, Y., An Asynchronous Operation Approach to Event-triggered Control for Fuzzy Markovian Jump Systems with General Switching Policies, IEEE Transactions on Fuzzy Systems, 1-1 · doi:10.1109/TFUZZ.2016.2633325
[36] Wang, B.; Cheng, J.; Al-Barakati, A.; Fardoun, H. M., A mismatched membership function approach to sampled-data stabilization for T-S fuzzy systems with time-varying delayed signals, Signal Processing, 140, 161-170 (2017) · doi:10.1016/j.sigpro.2017.05.018
[37] Wang, B.; Cheng, J.; Zhan, J., A sojourn probability approach to fuzzy-model-based reliable control for switched systems with mode-dependent time-varying delays, Nonlinear Analysis: Hybrid Systems, 26, 239-253 (2017) · Zbl 1373.93195 · doi:10.1016/j.nahs.2017.05.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.