×

Frame covariant nonminimal multifield inflation. (English) Zbl 1380.83310

Summary: We introduce a frame-covariant formalism for inflation of scalar-curvature theories by adopting a differential geometric approach which treats the scalar fields as coordinates living on a field-space manifold. This ensures that our description of inflation is both conformally and reparameterization covariant. Our formulation gives rise to extensions of the usual Hubble and potential slow-roll parameters to generalized fully frame-covariant forms, which allow us to provide manifestly frame-invariant predictions for cosmological observables, such as the tensor-to-scalar ratio \(r\), the spectral indices \(n_{\mathcal{R}}\) and \(n_T\), their runnings \(\alpha_{\mathcal{R}}\) and \(\alpha_T\), the non-Gaussianity parameter \(f_{N L}\), and the isocurvature fraction \(\beta_{\operatorname{iso}}\). We examine the role of the field space curvature in the generation and transfer of isocurvature modes, and we investigate the effect of boundary conditions for the scalar fields at the end of inflation on the observable inflationary quantities. We explore the stability of the trajectories with respect to the boundary conditions by using a suitable sensitivity parameter. To illustrate our approach, we first analyze a simple minimal two-field scenario before studying a more realistic nonminimal model inspired by Higgs inflation. We find that isocurvature effects are greatly enhanced in the latter scenario and must be taken into account for certain values in the parameter space such that the model is properly normalized to the observed scalar power spectrum \(P_{\mathcal{R}}\). Finally, we outline how our frame-covariant approach may be extended beyond the tree-level approximation through the Vilkovisky-De Witt formalism, which we generalize to take into account conformal transformations, thereby leading to a fully frame-invariant effective action at the one-loop level.

MSC:

83F05 Relativistic cosmology
53Z05 Applications of differential geometry to physics
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] Mukhanov, V. F.; Feldman, H. A.; Brandenberger, R. H., Theory of cosmological perturbations, Phys. Rep., 215, 203 (1992)
[2] Ratra, B.; Peebles, P. J.E., Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D, 37, 3406 (1988)
[3] Lyth, D. H.; Riotto, A., Particle physics models of inflation and the cosmological density perturbation, Phys. Rep., 314, 1 (1999)
[4] Mazumdar, A.; Rocher, J., Particle physics models of inflation and curvaton scenarios, Phys. Rep., 497, 85 (2011)
[5] Yamaguchi, M., Supergravity based inflation models: a review, Class. Quantum Gravity, 28, Article 103001 pp. (2011) · Zbl 1217.83005
[6] Pajer, E.; Peloso, M., A review of axion inflation in the era of planck, Class. Quantum Gravity, 30, Article 214002 pp. (2013) · Zbl 1277.83008
[7] Starobinsky, A. A.; Tsujikawa, S.; Yokoyama, J., Cosmological perturbations from multifield inflation in generalized Einstein theories, Nucl. Phys. B, 610, 383 (2001) · Zbl 0971.83088
[8] Senatore, L.; Zaldarriaga, M., The effective field theory of multifield inflation, J. High Energy Phys., 1204, Article 024 pp. (2012)
[9] Ade, P. A.R., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys., 571, A16 (2014)
[10] Ade, P. A.R., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20 (2016)
[11] Kaiser, D. I.; Sfakianakis, E. I., Multifield inflation after planck: the case for nonminimal couplings, Phys. Rev. Lett., 112, Article 011302 pp. (2014)
[12] Schutz, K.; Sfakianakis, E. I.; Kaiser, D. I., Multifield inflation after planck: isocurvature modes from nonminimal couplings, Phys. Rev. D, 89, Article 064044 pp. (2014)
[13] Dicke, R. H., Mach’s principle and invariance under transformation of units, Phys. Rev., 125, 2163 (1962) · Zbl 0113.45101
[14] Faraoni, V.; Gunzig, E.; Nardone, P., Conformal transformations in classical gravitational theories and in cosmology, Fundam. Cosm. Phys., 20, 121 (1999)
[15] Flanagan, E. E., The conformal frame freedom in theories of gravitation, Class. Quantum Gravity, 21, 3817 (2004) · Zbl 1070.83023
[16] Chiba, T.; Yamaguchi, M., Conformal-frame (in)dependence of cosmological observations in scalar-tensor theory, J. Cosmol. Astropart. Phys., 1310, Article 040 pp. (2013)
[17] Postma, M.; Volponi, M., Equivalence of the Einstein and Jordan frames, Phys. Rev. D, 90, 10, Article 103516 pp. (2014)
[18] Burns, D.; Karamitsos, S.; Pilaftsis, A., Frame-covariant formulation of inflation in scalar-curvature theories, Nucl. Phys. B, 907, 785 (2016) · Zbl 1336.83045
[19] Järv, L.; Kannike, K.; Marzola, L.; Racioppi, A.; Raidal, M.; Rünkla, M.; Saal, M.; Veermäe, H., Frame-independent classification of single-field inflationary models, Phys. Rev. Lett., 118, 15, Article 151302 pp. (2017)
[20] Steinwachs, C. F.; Kamenshchik, A. Y., Non-minimal higgs inflation and frame dependence in cosmology, AIP Conf. Proc., 1514, 161 (2012)
[21] Kamenshchik, A. Y.; Steinwachs, C. F., Question of quantum equivalence between Jordan frame and Einstein frame, Phys. Rev. D, 91, 8, Article 084033 pp. (2015)
[22] Domènech, G.; Sasaki, M., Conformal frame dependence of inflation, J. Cosmol. Astropart. Phys., 1504, Article 04 pp. (2015), 022
[23] van Tent, B. J.W., Multiple-field inflation and the CMB, Class. Quantum Gravity, 21, 349 (2004) · Zbl 1046.83049
[24] Achucarro, A.; Gong, J. O.; Hardeman, S.; Palma, G. A.; Patil, S. P., Features of heavy physics in the CMB power spectrum, J. Cosmol. Astropart. Phys., 1101, Article 030 pp. (2011)
[25] Gong, J. O.; Tanaka, T., A covariant approach to general field space metric in multi-field inflation, J. Cosmol. Astropart. Phys.. J. Cosmol. Astropart. Phys., J. Cosmol. Astropart. Phys., 1202, E01 (2012), Erratum
[26] Vilkovisky, G. A., The unique effective action in quantum field theory, Nucl. Phys. B, 234, 125 (1984)
[27] Rebhan, A., The Vilkovisky-de Witt effective action and its application to Yang-Mills theories, Nucl. Phys. B, 288, 832 (1987)
[28] DeWitt, B. S., The effective action in quantum field theory and quantum statistics, (Batalin, I. A.; Vilkovisky, G. A.; Isham, C. J., Quantum Statistics and Methods in Field Theory, vol. 1 (1987)), 191, Essays in Honour of the 60th Birthday of E.S. Fradkin · Zbl 0686.53068
[29] Bezrukov, F. L.; Shaposhnikov, M., The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659, 703 (2008)
[30] Järv, L.; Kuusk, P.; Saal, M.; Vilson, O., Invariant quantities in the scalar-tensor theories of gravitation, Phys. Rev. D, 91, Article 024041 pp. (2015)
[31] Kaiser, D. I., Conformal transformations with multiple scalar fields, Phys. Rev. D, 81, Article 084044 pp. (2010)
[32] Hohmann, M.; Järv, L.; Kuusk, P.; Randla, E.; Vilson, O., Post-Newtonian parameter \(γ\) for multiscalar-tensor gravity with a general potential, Phys. Rev. D, 94, Article 124015 pp. (2016)
[33] Sasaki, M.; Stewart, E. D., A General analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys., 95, 71 (1996)
[34] Weinberg, S., Adiabatic modes in cosmology, Phys. Rev. D, 67, Article 123504 pp. (2003)
[35] Weinberg, S., Non-Gaussian correlations outside the horizon, Phys. Rev. D, 78, Article 123521 pp. (2008)
[36] Polarski, D.; Starobinsky, A. A., Isocurvature perturbations in multiple inflationary models, Phys. Rev. D, 50, 6123 (1994)
[37] Bardeen, J. M., Gauge invariant cosmological perturbations, Phys. Rev. D, 22, 1882 (1980)
[38] Sasaki, M., Large scale quantum fluctuations in the inflationary universe, Prog. Theor. Phys., 76, 1036 (1986)
[39] Mukhanov, V. F., Quantum theory of gauge invariant cosmological perturbations, Sov. Phys. JETP. Sov. Phys. JETP, Zh. Eksp. Teor. Fiz., 94, 7, 1 (1988)
[40] White, J.; Minamitsuji, M.; Sasaki, M., Curvature perturbation in multi-field inflation with non-minimal coupling, J. Cosmol. Astropart. Phys., 1207, Article 039 pp. (2012)
[41] White, J.; Minamitsuji, M.; Sasaki, M., Non-linear curvature perturbation in multi-field inflation models with non-minimal coupling, J. Cosmol. Astropart. Phys., 1309, Article 015 pp. (2013)
[42] Elliston, J.; Seery, D.; Tavakol, R., The inflationary bispectrum with curved field-space, J. Cosmol. Astropart. Phys., 1211, Article 060 pp. (2012)
[43] McAllister, L.; Renaux-Petel, S.; Xu, G., A statistical approach to multifield inflation: many-field perturbations beyond slow roll, J. Cosmol. Astropart. Phys., 1210, Article 046 pp. (2012)
[44] Stewart, E. D.; Lyth, D. H., A more accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation, Phys. Lett. B, 302, 171 (1993)
[45] Nakamura, T. T.; Stewart, E. D., The spectrum of cosmological perturbations produced by a multicomponent inflaton to second order in the slow roll approximation, Phys. Lett. B, 381, 413 (1996)
[46] Wands, D.; Bartolo, N.; Matarrese, S.; Riotto, A., An observational test of two-field inflation, Phys. Rev. D, 66, Article 043520 pp. (2002)
[47] Kaiser, D. I.; Mazenc, E. A.; Sfakianakis, E. I., Primordial bispectrum from multifield inflation with nonminimal couplings, Phys. Rev. D, 87, Article 064004 pp. (2013)
[48] Byrnes, C. T.; Wands, D., Curvature and isocurvature perturbations from two-field inflation in a slow-roll expansion, Phys. Rev. D, 74, Article 043529 pp. (2006)
[49] Komatsu, E.; Spergel, D. N., Acoustic signatures in the primary microwave background bispectrum, Phys. Rev. D, 63, Article 063002 pp. (2001)
[50] Huang, Q. G.; Wang, Y., Curvaton dynamics and the non-linearity parameters in curvaton model, J. Cosmol. Astropart. Phys., 0809, Article 025 pp. (2008)
[51] Ganc, J., Calculating the local-type \(f_{N L}\) for slow-roll inflation with a non-vacuum initial state, Phys. Rev. D, 84, Article 063514 pp. (2011)
[52] Byrnes, C. T.; Gong, J. O., General formula for the running of \(f_{N L}\), Phys. Lett. B, 718, 718 (2013) · Zbl 1332.83105
[53] Lyth, D. H.; Rodriguez, Y., The inflationary prediction for primordial non-gaussianity, Phys. Rev. Lett., 95, Article 121302 pp. (2005)
[54] Lyth, D. H.; Wands, D., Generating the curvature perturbation without an inflaton, Phys. Lett. B, 524, 5 (2002) · Zbl 0981.83063
[55] Lalak, Z.; Langlois, D.; Pokorski, S.; Turzynski, K., Curvature and isocurvature perturbations in two-field inflation, J. Cosmol. Astropart. Phys., 0707, Article 014 pp. (2007)
[56] van de Bruck, C.; Longden, C., Running of the running and entropy perturbations during inflation, Phys. Rev. D, 94, 2, Article 021301 pp. (2016)
[57] Di Marco, F.; Finelli, F., Slow-roll inflation for generalized two-field Lagrangians, Phys. Rev. D, 71, Article 123502 pp. (2005)
[58] Garcia-Bellido, J.; Wands, D., Metric perturbations in two field inflation, Phys. Rev. D, 53, 5437 (1996)
[59] Linde, A. D., Hybrid inflation, Phys. Rev. D, 49, 748 (1994)
[60] Huston, I.; Christopherson, A. J., Isocurvature perturbations and reheating in multi-field inflation
[61] Burgess, C. P.; Kunstatter, G., On the physical Interpretation of the Vilkovisky-de Witt effective action, Mod. Phys. Lett. A. Mod. Phys. Lett. A, Mod. Phys. Lett. A, 2, 1003 (1987), Erratum
[62] Ellicott, P.; Toms, D. J., On the new effective action in quantum field theory, Nucl. Phys. B, 312, 700 (1989) · Zbl 0666.53051
[63] F. Bezrukov, S. Karamitsos, A. Pilaftsis, in preparation.; F. Bezrukov, S. Karamitsos, A. Pilaftsis, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.