×

Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization. (English) Zbl 1380.76014

Summary: We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.

MSC:

76F20 Dynamical systems approach to turbulence
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
65P30 Numerical bifurcation problems

References:

[1] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff ODEs, SIAM J. Numer. Anal., 14, 6, 1006-1021 (1977) · Zbl 0374.65038
[2] Barreira, L.; Pesin, Y., Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and Its Applications (2007), Cambridge University Press · Zbl 1144.37002
[3] Bec, J.; Biferale, L.; Boffetta, G.; Cencini, M.; Musacchio, S.; Toschi, F., Lyapunov exponents of heavy particles in turbulence, Phys. Fluids, 18, Article 091702 pp. (2006) · Zbl 1097.76040
[4] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J., Lyapunov Characteristic Exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 2: numerical application, Meccanica, 15, 1, 21-30 (1980)
[5] Billingsley, P., Probability and Measure (1995), John Wiley & Sons: John Wiley & Sons New York · Zbl 0822.60002
[6] Blonigan, P. J.; Wang, Q., Multiple shooting shadowing for sensitivity analysis of chaotic systems and turbulent fluid flow, (53rd AIAA Aerospace Sciences Meeting. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, USA (2015))
[7] Blonigan, P.; Wang, Q.; Nielsen, E.; Diskin, B., Least squares shadowing sensitivity analysis of chaotic flow around a two-dimensional airfoil, (54th AIAA Aerospace Sciences Meeting. 54th AIAA Aerospace Sciences Meeting, San Diego, USA (2016))
[8] Blonigan, P. J.; Fernandez, P.; Murman, S. M.; Wang, Q.; Rigas, G.; Magri, L., Towards a chaotic adjoint for LES, (Proceedings of the Center for Turbulence Research Summer Program 2016 (2017)), 385-394
[9] Chandramoorthy, N.; Fernandez, P.; Talnikar, C.; Wang, Q., The ensemble adjoint method for chaotic CFD: a feasibility study, (23rd AIAA Computational Fluid Dynamics Conference. 23rd AIAA Computational Fluid Dynamics Conference, Denver, USA (2017))
[10] Chandramoorthy, N.; Fernandez, P.; Talnikar, C.; Wang, Q., On the rate of convergence of ensemble sensitivity estimators in chaotic dynamical systems, J. Comput. Phys. (2017), submitted for publication
[11] Eckmann, J.-P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 3, 617-656 (1985) · Zbl 0989.37516
[12] Farmer, J. D.; Sidorowich, J. J., Optimal shadowing and noise reduction, Physica D, 47, 373-392 (1991) · Zbl 0729.65501
[13] Fernandez, P.; Nguyen, N. C.; Roca, X.; Peraire, J., Implicit large-eddy simulation of compressible flows using the interior embedded discontinuous Galerkin method, (54th AIAA Aerospace Sciences Meeting. 54th AIAA Aerospace Sciences Meeting, San Diego, USA (2016))
[14] Fernandez, P., High-Order Implicit-Large Eddy Simulation for Transitional Aerodynamic Flows (2016), Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Master Thesis
[15] Fernandez, P.; Nguyen, N. C.; Peraire, J., The hybridized discontinuous Galerkin method for implicit large-eddy simulation of transitional turbulent flows, J. Comput. Phys., 336, 1, 308-329 (2017) · Zbl 1375.76069
[16] Ferrario, B., Ergodic results for stochastic Navier-Stokes equation, Stoch. Stoch. Rep., 60, 3-4, 271-288 (1997) · Zbl 0882.60059
[17] Flandoli, F.; Maslowski, B., Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 172, 1, 119-141 (1995) · Zbl 0845.35080
[18] Ginelli, F.; Poggi, P.; Turchi, A.; Chaté, H.; Livi, R.; Politi, A., Characterizing dynamics with covariant Lyapunov vectors, Phys. Rev. Lett., 99, Article 130601 pp. (2007)
[19] Hairer, M.; Mattingly, J. C., Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164, 993-1032 (2006) · Zbl 1130.37038
[20] Haken, H., At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point, Phys. Lett. A, 94, 2, 71-72 (1983)
[21] Johnson, P. L.; Meneveau, C., Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence, Phys. Fluids, 27, 8, Article 085110 pp. (2015)
[22] Keefe, L.; Moin, P.; Kim, J., The dimension of attractors underlying periodic turbulent Poiseuille flow, J. Fluid Mech., 242, 1-29 (1992) · Zbl 0757.76018
[23] Lea, D. J.; Allen, M. R.; Haine, T. W., Sensitivity analysis of the climate of a chaotic system, Tellus A, 52, 523-532 (2000)
[24] Leith, C. E., Climate response and fluctuation dissipation, J. Atmos. Sci., 32, 2022-2026 (1975)
[25] Li, J.; Ye, X., Recent development of chaos theory in topological dynamics, Acta Math. Sin. Engl. Ser., 32, 1, 83-114 (2016) · Zbl 1335.54039
[26] Mañé, R., Lyapunov exponents and stable manifolds for compact transformations, (Geometric Dynamics. Geometric Dynamics, Lecture Notes in Math., vol. 1007 (1983), Springer), 522-577 · Zbl 0522.58030
[27] Mattingly, J. C., Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity, Commun. Math. Phys., 26, 2, 273-288 (1999) · Zbl 0953.37023
[28] Mohan, P.; Fitzsimmons, N.; Moser, R. D., Scaling of Lyapunov exponents in homogeneous, isotropic turbulence, (68th Annual Meeting of the APS Division of Fluid Dynamics. 68th Annual Meeting of the APS Division of Fluid Dynamics, Boston, USA (2015)), Abstract R19.010
[29] Nastac, G.; Magri, L.; Labahn, J.; Ihme, M., Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations, Phys. Rev. Fluids (2017), in press
[30] Nguyen, N. C.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations, J. Comput. Phys., 228, 9, 3232-3254 (2009) · Zbl 1187.65110
[31] Nguyen, N. C.; Peraire, J.; Cockburn, B., A class of embedded discontinuous Galerkin methods for computational fluid dynamics, J. Comput. Phys., 302, 1, 674-692 (2015) · Zbl 1349.76245
[32] Ni, A.; Blonigan, P.; Chater, M.; Wang, Q.; Zhang, Z., Sensitivity analysis on chaotic dynamical system by non-intrusive least square shadowing (NI-LSS), (46th AIAA Fluid Dynamics Conference. 46th AIAA Fluid Dynamics Conference, Washington, USA (2016))
[33] Ni, A.; Wang, Q., Sensitivity analysis on chaotic dynamical system by non-intrusive least square shadowing (NILSS), J. Comput. Phys., 347, 56-77 (2017) · Zbl 1380.65425
[34] Özkaya, E.; Gauger, N. R.; Nemili, A., Chaotic behavior of stiff ODEs and their derivatives: an illustrative example (2016)
[35] Oseledets, V. I., Multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems, Trudy MMO, 19, 179-210 (1968), (in Russian) · Zbl 0236.93034
[36] Pulliam, T.; Vastano, J., Transition to chaos in an open unforced 2D flow, J. Comput. Phys., 105, 133-149 (1993) · Zbl 0783.76062
[37] Ruelle, D., Ergodic theory of differentiable dynamical systems, Publ. Math. Ins. Haut. Sci., 50, 275-306 (1979)
[38] Sanderson, A. R., An alternative formulation of Lyapunov exponents for computing Lagrangian coherent structures, (IEEE Pacific Visualization Symposium (2014)), 277-280
[39] Shadden, S. C.; Lekien, F.; Marsden, J. E., Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 271-304 (2005) · Zbl 1161.76487
[40] Sirovich, L.; Deane, A., A computational study of Rayleigh-Bénard convection, part 2: dimension considerations, J. Fluid Mech., 222, 251-266 (1991) · Zbl 0717.76048
[41] Takeuchi, K. A.; Yang, H-l; Ginelli, F.; Radons, G.; Chaté, H., Hyperbolic decoupling of tangent space and effective dimension of dissipative systems, Phys. Rev. E, 84, Article 046214 pp. (2011)
[42] Thuburn, J., Climate sensitivities via a Fokker-Planck adjoint approach, Q. J. R. Meteorol. Soc., 131, 73-92 (2005)
[43] Vannitsem, S.; Nicolis, C., Lyapunov vectors and error growth patterns in a T21L3 quasigeostrophic model, J. Atmos. Sci., 54, 357-361 (1997)
[44] Vastano, J. A.; Moser, R. D., Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow, J. Fluid Mech., 233, 83-118 (1991) · Zbl 0738.76033
[45] Wang, Q.; Hui, R.; Blonigan, P., Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations, J. Comput. Phys., 267, 210-224 (2014) · Zbl 1349.37082
[46] Wei, M.; Frederiksen, J. S., Error growth and dynamical vectors during southern hemisphere blocking, Nonlinear Process. Geophys., 11, 99-118 (2004)
[47] Xu, M.; Paul, M. R., Covariant Lyapunov vectors of chaotic Rayleigh-Bénard convection, Phys. Rev. E, 93, Article 062208 pp. (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.