×

Multiple collinear Griffith cracks in a one-dimensional hexagonal quasicrystalline layer. (English) Zbl 1380.74108

Summary: The fracture behavior of multiple collinear Griffith cracks in a one-dimensional quasicrystalline layer is investigated in this paper. Using the Fourier transform technique, the mixed boundary value problem is reduced to a system of Cauchy singular integral equations. The integral equations are further reduced to a system of algebraic equations. The stress intensity factors of the phonon and phason fields and the energy release rate are determined. Numerical results reveal the effects of geometric size, the distance of the cracks and loading parameter ratio of the phonon and phason fields on crack propagation and growth. The results seem useful for the design of quasicrystalline materials, structures and devices of high performance.

MSC:

74R99 Fracture and damage
74E15 Crystalline structure
Full Text: DOI

References:

[1] Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951-1953 (1984) · doi:10.1103/PhysRevLett.53.1951
[2] Dubois, J.M.: Useful quasicrystals. World Scientific, Singapore (2005) · doi:10.1142/3585
[3] Bak, P.: Symmetry, statibility and elastic properties of icosahedron incommensurate crystals. Phys. Rev. B 32, 5764-5772 (1985) · doi:10.1103/PhysRevB.32.5764
[4] Levine, D., Lubensky, T.C., Ostlund, S., Ramaswamy, S., Steinhardt, P.J.: Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54, 1520-1523 (1985) · doi:10.1103/PhysRevLett.54.1520
[5] Hu, C.Z., Wang, R.H., Ding, D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63, 1-39 (2000) · doi:10.1088/0034-4885/63/1/201
[6] Fan, T.Y., Mai, Y.W.: Elasticity theory, fracture mechanics and some relevant thermal properties of quasicrystal materials. Appl. Mech. Rev. 57, 325-344 (2004) · doi:10.1115/1.1763591
[7] Fan, T.Y.: The mathematical elasticity of quasicrystals and its applications. Springer, Heidelberg (2011) · doi:10.1007/978-3-642-14643-5
[8] Hu, C.Z., Yang, W.Z., Wang, R.H.: Symmetry and physical properties of quasicrystals. Adv. Phys. 17, 345-376 (1997)
[9] Li, X.F., Fan, T.Y., Sun, Y.F.: A decagonal quasicrystal with a Griffith crack. Philos. Mag. A 79, 1943-1952 (1999) · doi:10.1080/01418619908210401
[10] Zhou, W.M., Fan, T.Y.: Plane elasticity problem of two-dimensional octagonal quasicrystals and crack problem. Chin. Phys. 10, 743-747 (2001) · doi:10.1088/1009-1963/10/8/315
[11] Zhu, A.Y., Fan, T.Y.: Elastic analysis of a mode II crack in an icosahedral quasicrystal. Chin. Phys. 16, 1111-1118 (2007) · doi:10.1088/1009-1963/16/4/042
[12] Gao, Y., Ricoeur, A., Zhang, L.: Plane problems of cubic quasicrystal media with an elliptic hole or a crack. Phys. Lett. A 375, 2775-2781 (2011) · doi:10.1016/j.physleta.2011.06.003
[13] Li, L.H., Fan, T.Y.: Exact solutions of two semi-infinite collinear cracks in a strip of one dimensional hexagonal quasicrystal. Appl. Math. Comput. 196, 1-5 (2008) · Zbl 1157.82396 · doi:10.1016/j.cam.2006.10.084
[14] Guo, Y.C., Fan, T.Y.: Mode-II Griffith crack in decagonal quasicrystals. Appl. Math. Mech. 22, 1311-1317 (2001) · Zbl 1143.74358 · doi:10.1023/A:1016382308840
[15] Guo, J.H., Liu, G.T.: Exact analytic solutions for an elliptic hole with asymmetric collinear cracks in a one-dimensional hexagonal quasicrystal. Chin. Phys. B 17, 2610-2610 (2008) · Zbl 1132.76040 · doi:10.1088/1674-1056/17/7/044
[16] Guo, J.H., Lu, Z.X.: Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals. Appl. Math. Comput. 217, 9397-9403 (2011) · Zbl 1256.74021
[17] Guo, J.H., Yu, J., Si, R.: A semi-inverse method of a Griffith crack in one dimensional hexagonal quasicrystals. Appl. Math. Comput. 219, 7445-7449 (2013) · Zbl 1435.74083
[18] Guo, J.H., Yu, J., Xing, Y.M.: Anti-plane analysis on a finite crack in a one-dimensional hexagonal quasicrystal strip. Mech. Res. Comm. 52, 40-45 (2013) · doi:10.1016/j.mechrescom.2013.06.005
[19] Radi, E., Mariano, P.M.: Stationary straight cracks in quasicrystals. Int. J. Fract. 166, 105-120 (2010) · doi:10.1007/s10704-010-9505-6
[20] Radi, E., Mariano, P.M.: Dynamic steady-state crack propagation in quasicrystals. Math. Meth. Appl. Sci. 34, 1-23 (2011) · Zbl 1427.74042 · doi:10.1002/mma.1325
[21] Radi, E., Mariano, P.M.: Steady-state crack propagation of dislocations in quasicrystals. Proc. Roy. Soc. A 467, 3490-3508 (2011) · Zbl 1243.82055 · doi:10.1098/rspa.2011.0226
[22] Tupholme, G.E.: Row of shear cracks moving in one-dimensional hexagonal quasicrystalline materials. Eng. Fract. Mech. 134, 451-458 (2015) · doi:10.1016/j.engfracmech.2014.07.002
[23] Ding, D.H., Yang, W., Hu, C., Wang, R.: Generalized elasticity theory of quasicrystals. Phys. Rev. B 48, 7003-7010 (1993) · doi:10.1103/PhysRevB.48.7003
[24] Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A 376, 2004-2009 (2012) · Zbl 1266.74012 · doi:10.1016/j.physleta.2012.04.049
[25] Erdogan, F., Gupta, G.D.: On the numerical solution of singular integral equations. Q. Appl. Math. 29, 525-539 (1972) · Zbl 0236.65083
[26] Yang, L.Z., Gao, Y., Pan, E., Waksmanski, N.: An exact closed-form solution for a multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mech. 226, 3611-3621 (2015) · Zbl 1401.74098 · doi:10.1007/s00707-015-1395-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.