×

Modified wavelet full-approximation scheme for the numerical solution of nonlinear Volterra integral and integro-differential equations. (English) Zbl 1380.65460

Summary: In this paper, modified wavelet full-approximation scheme is introduced for the numerical solution of nonlinear Volterra integral and integro-differential equations. Wavelet Prolongation and Restriction operators are developed using Daubechies wavelet filter coefficients. Results show that the proposed scheme offers an efficient and good accuracy with faster convergence in less computation cost, which is justified through the error analysis and CPU time.

MSC:

65T60 Numerical methods for wavelets
65R20 Numerical methods for integral equations
45D05 Volterra integral equations

Software:

Wesseling
Full Text: DOI

References:

[1] A.-M. Wazwaz, (2011), Linear and Nonlinear Integral Equations: Methods and Applications, Springer-Verlag Berlin Heidelberg.; Wazwaz, A.-M., Linear and Nonlinear Integral Equations: Methods and Applications (2011) · Zbl 1227.45002 · doi:10.1007/978-3-642-21449-3
[2] A. J. Jerri, (1999), Introduction to Integral Equations with Applications, John Wiley & Sons, Inc.; Jerri, A. J., Introduction to Integral Equations with Applications (1999) · Zbl 0938.45001
[3] K. E. Atkinson, (1997), The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, New York.; Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind (1997) · Zbl 0899.65077
[4] A. Brandt, (1977), Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation, 31, No 138, 333-390.; Brandt, A., Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation, 31, 138, 333-390 (1977) · Zbl 0373.65054 · doi:10.1090/S0025-5718-1977-0431719-X
[5] W. L. Briggs, V. E. Henson and S. F. McCormick, (2000), A Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadelphia, PA.; Briggs, W. L.; Henson, V. E.; McCormick, S. F., A Multigrid Tutorial (2000) · Zbl 0958.65128
[6] W. Hackbusch and U. Trottenberg (Eds.), (1982), Multigrid Methods, Proceedings of the Conference Held at KölnPorz, November 23-27, Springer-Verlag Berlin Heidelberg.; Hackbusch, W.; Trottenberg, U., Multigrid Methods, Proceedings of the Conference Held at KölnPorz, November 23-27 (1982) · Zbl 0497.00015 · doi:10.1007/BFb0069927
[7] P. Wesseling, (1995), Introduction to Multigrid Methods, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, NASA COntractor Report 195045.; Wesseling, P., Introduction to Multigrid Methods, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, NASA COntractor Report 195045 (1995) · Zbl 0872.76068
[8] U. Trottenberg, C. Oosterlee and A. Schüller, (2001), Multigrid, Academic Press, London-San Diego (CA).; Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid (2001) · Zbl 0976.65106
[9] A.A. Lubrecht, (1987), Numerical solution of the EHL line and point contact problem using multigrid techniques, PhD Thesis, University of Twente, Enschede, The Netherlands.; Lubrecht, A. A., Numerical solution of the EHL line and point contact problem using multigrid techniques (1987)
[10] C.H. Venner and A.A. Lubrecht, (2000), Multi-Level Methods in Lubrication, Elsevier Science B.V., Amsterdam.; Venner, C. H.; Lubrecht, A. A., Multi-Level Methods in Lubrication (2000) · Zbl 0815.65087
[11] E. A. Zargari, P. K. Jimack and M. A. Walkley, (2007), An investigation of the film thickness calculation for elastohydrodynamic lubrication problems, International Journal for Numerical Methods in Fluids, 00:1-6.; Zargari, E. A.; Jimack, P. K.; Walkley, M. A., An investigation of the film thickness calculation for elastohydrodynamic lubrication problems, 00, 1-6 (2007)
[12] H. Lee, (1997), Multigrid method for nonlinear integral equations, Korean Journal of Computational & Applied Mathematics, 4, No 2, 427-440.; Lee, H., Multigrid method for nonlinear integral equations, Korean Journal of Computational & Applied Mathematics, 4, 2, 427-440 (1997) · Zbl 0916.65137 · doi:10.1007/BF03014490
[13] C. K. Chui, (1997), Wavelets: A Mathematical Tool for Signal Analysis, Society for Industrial and Applied Mathematics, Philadelphia, PA.; Chui, C. K., Wavelets: A Mathematical Tool for Signal Analysis (1997) · Zbl 0903.94007
[14] Ü. Lepik and E. Tamme, (2005), Application of the Haar Wavelets for Solution of Linear Integral Equations, Proceedings of Dynamical Systems and Applications, Antalya, Turkey, 494-507.; Lepik, Ü.; Tamme, E., Application of the Haar Wavelets for Solution of Linear Integral Equations, 494-507 (2005) · Zbl 1339.65248
[15] I. Aziz and S.-ul-Islam, (2013), New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, Journal of Computational and Applied Mathematics, 239, 333-345.; Aziz, I.; -ul-Islam, S., New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, Journal of Computational and Applied Mathematics, 239, 333-345 (2013) · Zbl 1255.65235 · doi:10.1016/j.cam.2012.08.031
[16] D. De Leon, (2008), A new wavelet multigrid method, Journal of Computational and Applied Mathematics, 220, No 1-2, 674-685.; De Leon, D., A new wavelet multigrid method, Journal of Computational and Applied Mathematics, 220, 1-2, 674-685 (2008) · Zbl 1146.65074 · doi:10.1016/j.cam.2007.09.021
[17] N. M. Bujurke, C. S. Salimath, R. B. Kudenatti and S. C. Shiralashetti, (2007), A fast wavelet-multigrid method to solve elliptic partial differential equations, Applied Mathematics and Computation, 185, No 1, 667-680.; Bujurke, N. M.; Salimath, C. S.; Kudenatti, R. B.; Shiralashetti, S. C., A fast wavelet-multigrid method to solve elliptic partial differential equations, Applied Mathematics and Computation, 185, 1, 667-680 (2007) · Zbl 1107.65347 · doi:10.1016/j.amc.2006.07.074
[18] N. M. Bujurke, C. S. Salimath, R. B. Kudenatti and S. C. Shiralashetti, (2007), Wavelet-multigrid analysis of squeeze film characteristics of poroelastic bearings, Journal of Computational and Applied Mathematics, 203, No 1, 237-248.; Bujurke, N. M.; Salimath, C. S.; Kudenatti, R. B.; Shiralashetti, S. C., Wavelet-multigrid analysis of squeeze film characteristics of poroelastic bearings, Journal of Computational and Applied Mathematics, 203, 1, 237-248 (2007) · Zbl 1172.74319 · doi:10.1016/j.cam.2006.04.001
[19] N. M. Bujurke, C. S. Salimath, R. B. Kudenatti and S. C. Shiralashetti, (2007), Analysis of modified Reynolds equation using the wavelet-multigrid scheme, Numerical Methods for Partial Differential Equations, 23, No 3, 692-705.; Bujurke, N. M.; Salimath, C. S.; Kudenatti, R. B.; Shiralashetti, S. C., Analysis of modified Reynolds equation using the wavelet-multigrid scheme, Numerical Methods for Partial Differential Equations, 23, 3, 692-705 (2007) · Zbl 1125.76078 · doi:10.1002/num.20199
[20] A. Avudainayagam and C. Vani, (2004), Wavelet based multigrid methods for linear and nonlinear elliptic partial differential equations, Applied Mathematics and Computation, 148, No 2, 307-320.; Avudainayagam, A.; Vani, C., Wavelet based multigrid methods for linear and nonlinear elliptic partial differential equations, Applied Mathematics and Computation, 148, 2, 307-320 (2004) · Zbl 1044.65092 · doi:10.1016/S0096-3003(02)00845-7
[21] G. Wang, R. Dutton and J. Hou, (2000), A fast wavelet multigrid algorithm for solution of electromagnetic integral equations, Microwave and Optical Technology Letters, 24, No 2, 86-91.; Wang, G.; Dutton, R.; Hou, J., A fast wavelet multigrid algorithm for solution of electromagnetic integral equations, Microwave and Optical Technology Letters, 24, 2, 86-91 (2000)
[22] I. Daubechies, (1992), Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA.; Daubechies, I., Ten Lectures on Wavelets (1992) · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[23] I. Daubechies, (1988), Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41, No 7, 909-996.; Daubechies, I., Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41, 7, 909-996 (1988) · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[24] M. Griebel and S. Knapek, (1995), A Multigrid-Homogenization Method, in: Modeling and Computation in Environmental Sciences, Proceedings of the First GAMM-Seminar at ICA Stuttgart, October 12-13, Stuttgart, Volume 59 of the series Notes on Numerical Fluid Mechanics (NNFM) pp 187-202.; Griebel, M.; Knapek, S., A Multigrid-Homogenization Method, in: Modeling and Computation in Environmental Sciences, Proceedings of the First GAMM-Seminar at ICA Stuttgart, October 12-13, Stuttgart, Volume 59 of the series Notes on Numerical Fluid Mechanics (NNFM), 187-202 (1995) · Zbl 0884.76063 · doi:10.1007/978-3-322-89565-3_17
[25] I. S. Kotsireas, (2008), A Survey on Solution Methods for Integral Equations. Available at:; Kotsireas, I. S., A Survey on Solution Methods for Integral Equations (2008)
[26] S. C. Shiralashetti and A. B. Deshi, (2016), An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations, Nonlinear Dynamics, 83, No 1, 293-303.; Shiralashetti, S. C.; Deshi, A. B., An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations, Nonlinear Dynamics, 83, 1, 293-303 (2016) · Zbl 1474.65258 · doi:10.1007/s11071-015-2326-4
[27] S.C. Shiralashettia, A.B. Deshia and P.B. Mutalik Desaib, (2016), Haar wavelet collocation method for the numerical solution of singular initial value problems, Ain Shams Engineering Journal, 7, No 2, 663-670.; Shiralashettia, S. C.; Deshia, A. B.; Mutalik Desaib, P. B., Haar wavelet collocation method for the numerical solution of singular initial value problems, Ain Shams Engineering Journal, 7, 2, 663-670 (2016) · doi:10.1016/j.asej.2015.06.006
[28] A. Mohsen and M. El-Gamel, (2010), On the numerical solution of linear and nonlinear volterra integral and integro-differential equations, Applied Mathematics and Computation, 217, No 7, 3330-3337.; Mohsen, A.; El-Gamel, M., On the numerical solution of linear and nonlinear volterra integral and integro-differential equations, Applied Mathematics and Computation, 217, 7, 3330-3337 (2010) · Zbl 1204.65158 · doi:10.1016/j.amc.2010.08.065
[29] A. Shahsavaran, (2011), Numerical Solution of Nonlinear Fredholm-Volterra Integtral Equations via Piecewise Constant Function by Collocation Method, American Journal of Computational Mathematics, No 1, 134-138.; Shahsavaran, A., Numerical Solution of Nonlinear Fredholm-Volterra Integtral Equations via Piecewise Constant Function by Collocation Method, American Journal of Computational Mathematics, 1, 134-138 (2011) · Zbl 1248.65139 · doi:10.4236/ajcm.2011.12014
[30] M. Razzaghi, Y. Ordokhani, (2000), Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions, Mathematical Problems in Engineering, 7, No 2, 205-219.; Razzaghi, M.; Ordokhani, Y., Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions, Mathematical Problems in Engineering, 7, 2, 205-219 (2000) · Zbl 0990.65152 · doi:10.1155/S1024123X01001612
[31] S. Yalçinbaş, (2002), Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations, Applied Mathematics and Computation, 127, No 2-3, 195-206.; Yalçinbaş, S., Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations, Applied Mathematics and Computation, 127, 2-3, 195-206 (2002) · Zbl 1025.45003 · doi:10.1016/S0096-3003(00)00165-X
[32] A. Avudainayagam and C. Vani , (2000),Wavelet-Galerkin method for integro-differential equations, Applied Numerical Mathematics, 32, No 3, 247-254.; Avudainayagam, A.; Vani, C., Wavelet-Galerkin method for integro-differential equations, Applied Numerical Mathematics, 32, 3, 247-254 (2000) · Zbl 0955.65100 · doi:10.1016/S0168-9274(99)00026-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.