×

Hidden chaotic sets in a Hopfield neural system. (English) Zbl 1380.65423

Summary: In this paper we unveil the existence of hidden chaotic sets in a simplified Hopfield neural network with three neurons. It is shown that beside two stable cycles, the system presents hidden chaotic attractors and also hidden chaotic transients which, after a relatively long life-time, fall into regular motions along the stable cycles.

MSC:

65P20 Numerical chaos
34C28 Complex behavior and chaotic systems of ordinary differential equations
34D45 Attractors of solutions to ordinary differential equations

Software:

bvp4c
Full Text: DOI

References:

[1] Grebogi, C.; Ott, E.; Yorke, J. A., Fractal Basin Boundaries, Long-Lived Chaotic Transients, and Unstable-Unstable Pair Bifurcation, Phys Rev Lett, 50:935 (1983)
[2] Kantz, H.; Grassberger, P., Phys D, 17:75 (1985) · Zbl 0597.58017
[3] Kaplan, J. L.; Yorke, J. A., Commun Math Phys, 67:93 (1979) · Zbl 0443.76059
[4] Yorke, J. A.; Yorke, E. D., J Stat Phys, 21:263 (1979)
[5] Shulenburger, L.; Y-C, L.; Yalçinkaya, T.; Holt, R. D., Phys Lett A, 260:156 (1999) · Zbl 0934.92034
[6] Nusse, H. E.; Yorke, J. A., Phys D, 36:137 (1989) · Zbl 0728.58027
[7] Hsu, G. H.; Ott, E.; Grebogi, C., Phys Lett A, 127:199 (1988)
[8] Zhu, L.; Raghu, A.; Lai, Y. C., Phys Rev Lett, 86:4017 (2001)
[9] Ahlers, G.; Walden, R. W., Phys Rev Lett, 44:445 (1980)
[10] Yang, X. S.; Yuan, Q., Neurocomputing, 69:232 (2005)
[11] Dhamala, M.; Lai, Y. C.; Kostelich, E. J., Phys Rev E, 61:6485 (2000)
[12] Vadasz, P., App Math Lett, 23:503 (2010) · Zbl 1185.37087
[13] Astafev, G. B.; Koronovskii, A. A.; Khramov, A. E., Tech Phys Lett+, 2:923 (2003)
[14] McCann, K.; Yodzis, P., Am Nat, 144:873 (1994)
[15] Dhamala, M.; Lai, Y. C., Phys Rev E, 59:1646 (1999)
[16] Capeáns, R.; Sabuco, J.; Sanjuán, M. A.F.; Yorke, J. A., Philos Tr Soc A (2017)
[17] Motter, A. E.; Gruiz, M.; Károlyi, G.; Tél, T., Phys Rev Lett, 111:194101 (2013)
[18] Skarda, C. A.; Freeman, W. J., Behav Brain Sci, 10:161 (1987)
[19] Freeman, W. J., Neurodynamics: an exploration in mesoscopic brain dynamics (2000), Springer · Zbl 0965.92009
[20] Dror, G.; Tsodyks, M., Neurocomputing, 32, 365-370 (2000)
[21] Nara, S.; Davis, P.; Kawachi, M.; Totsuji, H., Int J Bifurcat Chaos, 5:1205 (1995) · Zbl 0886.58106
[22] Cao, J.; Lu, J., Chaos, 16:013133 (2006) · Zbl 1144.37331
[23] Aihara, K.; Takebe, T.; Toyoda, M., Phys Lett A, 144:333 (1990)
[24] Freeman, W. J., Int J Bifurcat Chaos, 2:451 (1992) · Zbl 0900.92036
[25] Guckenheimer, J.; Oliva, R. A., SIAM J Appl Dyn Syst, 1:105 (2002) · Zbl 1002.92005
[26] Kawamura, M.; Okada, M., J Phys A Math Gen, 35:253 (2002) · Zbl 1038.82070
[27] Hopfield, J. J., Proc Nat Acad Sci USA, 79:2554 (1982) · Zbl 1369.92007
[28] Kaslik, E.; Balint, S., Chaos Soliton Fract, 2006 (2006)
[29] Huang, C.; Huang, L.; Feng, J.; Nai, M.; He, Y., Chaos Soliton Fract, 34:795 (2007) · Zbl 1149.34047
[30] Yang, X. S.; Huang, Y., Chaos, 16:033114 (2006) · Zbl 1146.37371
[31] Huang, W. Z.; Huang, Y., App Mat Comput, 206:1 (2008) · Zbl 1157.65508
[32] Park, M. J.; Kwon, O. M.; Park Ju, H.; Lee, S. M.; Cha, E. J., Chinese Phys B, 20:110504 (2011)
[33] Leonov, G. A.; Kuznetsov, N. V., Int J Bifurcat Chaos, 23:1330002 (2013) · Zbl 1270.34003
[34] Leonov, G.; Kuznetsov, N.; Mokaev, T., Eur Phys J Spec Top, 224:1421 (2015)
[35] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Phys Lett A, 375:2230 (2011) · Zbl 1242.34102
[36] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Phys D, 241:1482 (2012) · Zbl 1277.34052
[37] Kuznetsov, N. V., Hidden attractors in fundamental problems and engineering models. a short survey, AETA, 2015 recent advances in electrical engineering and related sciences, Lect Notes Electr Eng, 371, 13 (2016)
[38] Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N. V.; Leonov, G. A.; Prasad, A., Phys Rep, 637:1 (2016) · Zbl 1359.34054
[39] Pisarchik, A.; Feudel, U., Phys Rep, 540:167 (2014) · Zbl 1357.34105
[40] Abramyan, A. K.; Vakulenko, S. A., Theor Math Phys+, 130:245 (2002) · Zbl 1077.34047
[41] Vakulenko, S. A., Adv Diff Equat, 5:1739 (2000)
[42] Dang, X. Y.D.; Li, C. B.; Bao, B. C.; Wu, H. G., Chinese Phys B, 24:050503 (2015)
[43] Shampine, L. F.; Gladwell, I.; Thompson, S., Solving ODEs with MATLAB (2003), Cambridge Univ Press · Zbl 1079.65144
[44] Brenan, K. E.; Campbell, S. L.; Petzold, L. R., Numerical solution of initial-value problems in differential-algebraic equations (SIAM classics in applied mathematics, 14), SIAM (1996) · Zbl 0844.65058
[45] Danca, M. F., Nonlinear Dynam, 86:1263 (2016)
[46] Kehlet, B.; Logg, A., Quantifying the computability of the Lorenz system arXiv:13062782v1 [mathNA] 12 Jun (2013)
[47] Thom, R., Dialectica, 29, 71 (1975) · Zbl 0399.00009
[48] Akhmet, M. U.; Fen, M. O., J Nonlinear Sci, 24:411 (2014) · Zbl 1323.34061
[49] Akhmet, M.; Fen, M. O., Neurocomputing, 145:230 (2014)
[50] Anosov, D.; Arnold, V., Dynamical systems i (1985), Springer: Springer New York
[51] Arnold, V., Mathematical methods of classical mechanics (1978), Springer: Springer New York · Zbl 0386.70001
[52] Ushakov Yu, V.; Dubkov, A. A.; Spagnolo, B., Phys Rev Lett, 107:108103 (2011)
[53] Pankratova, E. V.; Polovinkin, A. V.; Bernardo, S., Phys Lett A, 344, 43-50 (2005) · Zbl 1194.37180
[54] Augello, G.; Spagnolo, B., Eur Phis J B, 65:443 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.