×

Multiscale boundary conditions for drug dissolution applied to coronary stents. (English) Zbl 1380.65264

Summary: We propose a fully coupled model for the description of fluid dynamics of blood, plasma filtration, and mass transport by a coronary drug eluting stent. We deduce an analytical solution for a reduced model for drug dissolution and establish suitable boundary conditions accounting for the smaller scale of the coating of the stent with respect to the release medium. This approach allows for a reduction of the computational cost of the simulations on realistic three-dimensional stent geometries. Numerical experiments to show the effectiveness of the method applied to the approximation of the multiscale model are also presented.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35Q35 PDEs in connection with fluid mechanics
35A20 Analyticity in context of PDEs
Full Text: DOI

References:

[1] G. Acharya and K. Park, {\it Mechanisms of controlled drug release from drug-eluting stents}, Adv. Drug Deliv. Rev., 58 (2006), pp. 387-401.
[2] A. N. Brooks and T. J. R. Hughes, {\it Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations}, Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199-259. · Zbl 0497.76041
[3] E. Cutrì, P. Zunino, S. Morlacchi, C. Chiastra, and F. Migliavacca, {\it Drug delivery patterns for different stenting techniques in coronary bifurcations: A comparative computational study}, Biomech. Model. Mechanobiol., 12 (2013), pp. 657-669.
[4] C. D’Angelo and P. Zunino, {\it Robust numerical approximation of coupled Stokes and Darcy’s flows applied to vascular hemodynamics and biochemical transport}, Math. Model. Numer. Anal., 45 (2011), pp. 447-476. · Zbl 1274.92010
[5] C. D’Angelo, P. Zunino, A. Porpora, S. Morlacchi, and F. Migliavacca, {\it Model reduction strategies enable computational analysis of controlled drug release from cardiovascular stents}, SIAM J. Appl. Math., 71 (2011), pp. 2312-2333. · Zbl 1246.92014
[6] L. Formaggia, S. Minisini, and P. Zunino, {\it Modeling polymeric controlled drug release and transport phenomena in the arterial tissue}, Math. Models Methods Appl. Sci., 20 (2010), pp. 1759-1786. · Zbl 1201.92037
[7] L. Formaggia, A. Quarteroni, and A. V. Eds., {\it Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System}, Springer-Verlag, Milan, 2009. · Zbl 1300.92005
[8] H. Fujita, {\it Diffusion in polymer-diluent systems}, Fortschr. Hochpolym. Forsch., 3 (1961), pp. 1-47.
[9] I. Gradus-Pizlo, B. Bigelow, Y. Mahomed, S. G. Sawada, K. Rieger, and H. Feigenbaum, {\it Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes adventitia}, Am. J. Cardiol., 91 (2003), pp. 27-32.
[10] E. Gudin͂o and A. Sequeira, {\it 3D mathematical model for blood flow and non-Fickian mass transport by a coronary drug-eluting stent}, Appl. Math. Model., 46 (2017), pp. 161-180, . · Zbl 1443.76034
[11] S. S. Hossain, S. F. A. Hossainy, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, {\it Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls}, Comput. Mech., 49 (2011), pp. 213-242. · Zbl 1366.92059
[12] Z. J. Huang and J. M. Tarbell, {\it Numerical simulation of mass transfer in porous media of blood vessel walls}, Am. J. Physiol. Heart Circ. Physiol., 273 (1997), pp. 464-477.
[13] O. Kedem and A. Katchalsky, {\it Thermodynamic analysis of the permeability of biological membranes to non-electrolytes}, Biochim. Biophys. Acta, 27 (1958), pp. 229-246.
[14] S. McGinty, {\it A decade of modelling drug release from arterial stents}, Math. Biosci., 257 (2014), pp. 80-90. · Zbl 1370.92074
[15] S. McGinty, S. McKee, C. McCormick, and M. Wheel, {\it Release mechanism and parameter estimation in drug-eluting stent systems: Analytical solutions of drug release and tissue transport}, Math. Med. Biol., (2015), pp. 163-186. · Zbl 1329.92046
[16] F. Migliavacca, F. Gervaso, M. Prosi, P. Zunino, S. Minisini, L. Formaggia, and G. Dubini, {\it Expansion and drug elution model of a coronary stent}, Comput. Methods Biomech. Biomed. Engrg., 10 (2007), pp. 63-73.
[17] G. Pontrelli, A. D. Mascio, and F. de Monte, {\it Local mass non-equilibrium dynamics in multi-layered porous media: Application to the drug-eluting stent}, Int. J. Heat Mass Transfer, 66 (2013), pp. 844-854.
[18] D. V. Sakharov, L. V. Kalachev, and D. C. Rijke, {\it Numerical simulation of local pharmacokinetics of a drug after intravascular delivery with an eluting stent}, J. Biomech., 10 (2002), pp. 507-513.
[19] G. Vairo, M. Cioffi, R. Cottone, G. Dubini, and F. Migliavacca, {\it Drug release from coronary eluting stents: A multi domain approach}, J. Biomech., 43 (2010), pp. 1580-1589.
[20] B. L. van der Hoeven, N. M. M. Pires, H. M. Warda, P. V. Oemrawsingh, B. J. M. van Vlijmen, P. H. A. Quax, M. J. Schalij, E. E. van der Wall, and J. W. Jukema, {\it Drug-eluting stents: Results, promises and problems}, Int. J. Cardiol., 99 (2005), pp. 9-17.
[21] C. Vergara and P. Zunino, {\it Multiscale boundary conditions for drug release from cardiovascular stents}, Multiscale Model. Simul., 7 (2008), pp. 565-588. · Zbl 1183.93040
[22] P. Zunino, C. D’Angelo, L. Petrini, C. Vergara, C. Capelli, and F. Migliavacca, {\it Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release}, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 120-124. · Zbl 1229.76122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.