×

A systematic construction of parity-time (\(\mathcal{PT}\))-symmetric and non-\(\mathcal{PT}\)-symmetric complex potentials from the solutions of various real nonlinear evolution equations. (English) Zbl 1380.37124

The authors construct parity-time (PT)-symmetric as well as non-PT-symmetric complex potentials of the linear stationary Schrödinger equation by means of known solitons and periodic solutions of some integrable real nonlinear evolution equations (NLEEs). These NLEEs are made up of the sine-Gordon (sG), modified Korteweg de Vries (mKdV), combined mKdV-sG, and the Gardner equations, and the complex potentials are constructed using a method suggested in [M. Wadati, J. Phys. Soc. Japan 77, 074005 (2008)].
The interest in the PT-symmetry of the potentials is justified by the fact that the PT-invariance of the Hamiltonian is a more relaxed condition than Hermiticity, provided that this PT-symmetry is not spontaneously broken. For each of these NLEEs, a small number of their solitons is considered and each such a solution is used to construct a complex potential of the linear Schrödinger equation.
Complex potentials constructed from solutions obtained by the inverse scattering transform (IST) method are PT-symmetric, and it is easy to verify if this PT-symmetry is spontaneously broken or not. For all the cases considered in the paper, it turns out that symmetries are not broken.
For complex potentials constructed from solutions which are not obtained by the IST method such as the periodic solitons, there is no general formalism to determine whether the corresponding energy eigenvalues are real or not. Thus for such complex potentials, the authors make use of the numerical evaluation of the corresponding (isolated) low-energy eigenvalues. It turns out that in all such cases considered in the paper the numerically computed energy eigenvalues are real when the complex potential satisfies PT-symmetry, and complex when it does not.
Possible applications to the graphene model of the PT-symmetric potentials obtained from the sG equation and the combined mKdV-sG equation are also discussed. These discussions are carried out along the lines of similar connections established in [C. L. Ho et al., Europhys. Lett. 112, 47004 (2015)] between the graphene model and the PT-invariant potentials obtained from the mKdV and the Gardner equations.

MSC:

37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
35C08 Soliton solutions
35Q40 PDEs in connection with quantum mechanics
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett.80 5243 · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[2] Bender C M 2005 Contemp. Phys.46 277 · doi:10.1080/00107500072632
[3] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett.32 2632 · doi:10.1364/OL.32.002632
[4] Rüter C E, Markis K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys.6 192-5 · doi:10.1038/nphys1515
[5] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys.5 2927
[6] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett.100 030402 · doi:10.1103/PhysRevLett.100.030402
[7] Abdullaev F K, Kartashov Y V, Konotop V V and Zezyulin D A 2011 Phys. Rev. A 83 041805 · doi:10.1103/PhysRevA.83.041805
[8] He Y, Zhu X, Mihalache D, Liu J and Chen Z 2012 Phys. Rev. A 85 013831 · doi:10.1103/PhysRevA.85.013831
[9] Moreira F C, Abdullaev F K, Konotop V V and Yulin A V 2012 Phys. Rev. A 86 053815 · doi:10.1103/PhysRevA.86.053815
[10] Truong V Y N, D’ Ambroise J, Abdullaev F K and Kevrekidis P G 2015 arXiv:1501.00519v1
[11] Moreira F C, Konotop V V and Malomed B A 2013 Phys. Rev. A 87 013832 · doi:10.1103/PhysRevA.87.013832
[12] Achilleos V, Kevrekidis P G, Frantzeskakis D J and Carretero-Gonzalez R 2013 Phys. Rev. A 86 013808 · doi:10.1103/PhysRevA.86.013808
[13] Li H, Shi Z, Jiang X and Zhu X 2011 Opt. Lett.36 3290 · doi:10.1364/OL.36.003290
[14] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 J. Phys. A: Math. Theor.41 244019 · Zbl 1140.81362 · doi:10.1088/1751-8113/41/24/244019
[15] Hu S, Ma X and Hu W 2011 Phys. Rev. A 84 043818 · doi:10.1103/PhysRevA.84.043818
[16] Hu S and Hu W 2012 J. Phys. B. At. Mol. Opt. Phys.45 225401 · doi:10.1088/0953-4075/45/22/225401
[17] Midya B and Roychoudhury R 2013 Phy. Rev. A 87 045803 · doi:10.1103/PhysRevA.87.045803
[18] Zezyulin D A and Konotop V V 2012 Phys. Rev. A 85 043840 · doi:10.1103/PhysRevA.85.043840
[19] Khare A, Al-Marzoug S M and Bahlouli H 2012 Phys. Lett. A 376 2880 · doi:10.1016/j.physleta.2012.09.047
[20] Honga W P and Jung Y D 2015 Phys. Lett. A 379 676-9 · doi:10.1016/j.physleta.2014.12.031
[21] Zhan K, Tian H, Li X, Xu X, Jiao Z and Jia Y 2016 Sci. Rep.6 32990 · doi:10.1038/srep32990
[22] Achilleos V, Kevrekidis P G, Frantzeskakis D J and Carretero-Gonzlez R 2012 Phys. Rev. A 86 013808 · doi:10.1103/PhysRevA.86.013808
[23] Wadati M 2008 J. Phys. Soc. Japan77 074005 · doi:10.1143/JPSJ.77.074005
[24] Yang J 2014 Opt. Lett.39 5547 · doi:10.1364/OL.39.005547
[25] Tsoy E N, Allayarov I M and Abdullaev F K 2014 Opt. Lett.39 4215 · doi:10.1364/OL.39.004215
[26] Yang J and Nixon S 2016 Phys. Lett. A 380 3803 · Zbl 1366.35175 · doi:10.1016/j.physleta.2016.09.023
[27] Zezyulin D A, Barashenkov I V and Konotop V V 2016 Phys. Rev. A 94 063649 · doi:10.1103/PhysRevA.94.063649
[28] Mineev M B and Shmidt V V 1980 Zh. Eksp. Teor. Fiz.79 893
[29] Rice M, Bishop A R, Krumhansl J A and Trullinger S E 1976 Phys. Rev. Lett.36 432 · doi:10.1103/PhysRevLett.36.432
[30] Salerno M 1991 Phys. Rev. A 44 5292 · doi:10.1103/PhysRevA.44.5292
[31] Lonngren K E 1998 Opt. Quantum Electron.30 615 · doi:10.1023/A:1006910004292
[32] Khater A H, El-Kakaawy O H and Callebaut D K 1998 Phys. Scr.58 545 · doi:10.1088/0031-8949/58/6/001
[33] Ziegler V, Dinkel J, Setzer C and Lonngren K E 2001 Chaos Solitons Fractals12 1719 · Zbl 1022.35063 · doi:10.1016/S0960-0779(00)00137-5
[34] Komatsu T S and Sasa S I 1995 Phys. Rev. E 52 5574 · doi:10.1103/PhysRevE.52.5574
[35] Konno K, Kameyama W and Sanuki H 1974 J. Phys. Soc. Japan37 171 · doi:10.1143/JPSJ.37.171
[36] Leblond H, Melńikov I V and Mihalache D 2008 Phys. Rev. A 78 043802 · doi:10.1103/PhysRevA.78.043802
[37] Ruderman M S, Talipova T and Pelinovsky E 2008 J. Plasma Phys.74 639
[38] Grimshaw R, Slunyaev A and Pelinovsky E 2010 Chaos20 013102 · Zbl 1311.35218 · doi:10.1063/1.3279480
[39] Meĺnikov I V, Mihalache D, Moldoveanu F and Panoiu N C 1997 Phys. Rev. A 56 1569 · doi:10.1103/PhysRevA.56.1569
[40] Leblond H and Sanchez F 2003 Phys. Rev. A 67 013804 · doi:10.1103/PhysRevA.67.013804
[41] Meĺnikov I V, Leblond H, Sanchez F and Mihalache D 2004 IEEE J. Sel. Top. Quantum Electron.10 870 · doi:10.1109/JSTQE.2004.839026
[42] Leblond H, Sazonov S V, Meĺnikov I V, Mihalache D and Sanchez F 2006 IEEE J. Sel. Top. Quantum Electron.74 063815
[43] Barashenkov I V, Zezyulin D A and Konotop V V 2016 Exactly solvable Wadati potentials in the PT-symmetric Gross-Pitaevskii equation, in non-Hermitian Hamiltonians in quantum physics Proc. of the 15th Conf. on Non-Hermitian Hamiltonians in Quantum Physics(Palermo, Italy, 18-23 May 2015)vol 184 ed F Bagarello et al (Cham: Springer) pp 143-55 · Zbl 1402.81126 · doi:10.1007/978-3-319-31356-6_9
[44] Ho C L and Roy P 2015 Europhys. Lett.112 47004 · doi:10.1209/0295-5075/112/47004
[45] Rajaraman R 1982 Solitons and Instantons (Amsterdam: North-Holland) · Zbl 0493.35074
[46] Cuevas-Maraver J, Kevrekidis P G and Williams F (ed) 2014 The Sine-Gordon Model and its Applications, Nonlinear Systems and Complexity (Switzerland: Springer) · Zbl 1341.37046
[47] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys.88 035002 · doi:10.1103/RevModPhys.88.035002
[48] DelĺAnna L and Martino A D 2009 Phys. Rev. B 79 045420 · doi:10.1103/PhysRevB.79.045420
[49] Ablowitz M J and Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia, PA: SIAM) · Zbl 0472.35002 · doi:10.1137/1.9781611970883
[50] Caudrey P J, Gibbon J D, Eilbeck J C and Bullough R K 1973 Phys. Rev. Lett.30 237 · doi:10.1103/PhysRevLett.30.237
[51] Cen J, Correa F and Fring A 2017 arXiv:1705.04749
[52] Gendenshtein L E 1983 Zh. Eksp. Teor. Fiz. Pis. Red38 299
[53] Gendenshtein L E 1983 JETP Lett.38 35 (Eng. transl.)
[54] Shi Z, Jiang X, Zhu X and Li H 2011 Phys. Rev. A 84 053855 · doi:10.1103/PhysRevA.84.053855
[55] Fu Z, Shida L and Shida L 2007 Phys. Scr.76 15-21 · Zbl 1128.35376 · doi:10.1088/0031-8949/76/1/003
[56] Drazin P G and Johnson R S 1989 Solitons: an Introduction (Cambridge: Cambridge University Press) · Zbl 0661.35001 · doi:10.1017/CBO9781139172059
[57] Kevrekidis P G, Khare A and Saxena A 2003 Phys. Rev. E 68 047701 · doi:10.1103/PhysRevE.68.047701
[58] Kevrekidis P G, Khare A, Saxena A and Herring G 2004 J. Phys. A: Math. Gen.37 10959 · Zbl 1084.35073 · doi:10.1088/0305-4470/37/45/014
[59] Wadati M 1973 J. Phys. Soc. Japan34 1289 · Zbl 1334.35299 · doi:10.1143/JPSJ.34.1289
[60] Wadati M 1973 J. Phys. Soc. Japan38 681 · Zbl 1334.82023 · doi:10.1143/JPSJ.38.681
[61] Wazwaz A M 2009 Partial Differential Equations and Solitary Waves Theory (New York: Springer) · Zbl 1175.35001 · doi:10.1007/978-3-642-00251-9
[62] Khare A and Saxena A 2014 J. Math. Phys.55 032701 · Zbl 1288.35153 · doi:10.1063/1.4866781
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.